GetFEM
5.4.3
|
Include standard gmm iterative solvers (cg, gmres, ...) More...
#include "gmm_iter.h"
#include "gmm_precond_diagonal.h"
#include "gmm_precond_ildlt.h"
#include "gmm_precond_ildltt.h"
#include "gmm_precond_mr_approx_inverse.h"
#include "gmm_precond_ilu.h"
#include "gmm_precond_ilut.h"
#include "gmm_precond_ilutp.h"
#include "gmm_solver_cg.h"
#include "gmm_solver_bicgstab.h"
#include "gmm_solver_qmr.h"
#include "gmm_solver_constrained_cg.h"
#include "gmm_solver_Schwarz_additive.h"
#include "gmm_modified_gram_schmidt.h"
#include "gmm_tri_solve.h"
#include "gmm_solver_gmres.h"
#include "gmm_solver_bfgs.h"
#include "gmm_least_squares_cg.h"
Go to the source code of this file.
Functions | |
template<typename FUNC , typename T > | |
T | gmm::find_root (const FUNC &G, T a=T(0), T b=T(1), T tol=gmm::default_tol(T())) |
mixed method to find a zero of a real function G, a priori between a and b. More... | |
Include standard gmm iterative solvers (cg, gmres, ...)
Definition in file gmm_iter_solvers.h.
T gmm::find_root | ( | const FUNC & | G, |
T | a = T(0) , |
||
T | b = T(1) , |
||
T | tol = gmm::default_tol(T()) |
||
) |
mixed method to find a zero of a real function G, a priori between a and b.
If the zero is not between a and b, iterations of secant are applied. When a convenient interval is found, iterations of dichotomie and regula falsi are applied.
Definition at line 51 of file gmm_iter_solvers.h.