
Titanium Description
Kristóf Szabados, çdám Knapp

Version 11.0.0, 2024-11-14

Table of Contents
1. Introduction . Ê2

1.1. How to read this document . Ê2

1.2. Overview of Titanium . Ê2

1.3. General workflow . Ê2

1.4. The TITAN implementation of TTCNÐ3 . Ê3

1.5. Intended audience . Ê3

1.6. Presumed knowledge . Ê3

1.7. Typographical conventions . Ê3

1.8. Installation . Ê4

1.9. How to report an error for the tool . Ê4

2. Getting started . Ê5

2.1. The perspective . Ê5

2.2. Setting workbench preferences . Ê5

2.3. TITAN preferences . Ê5

3. Titanium preferences . Ê7

3.1. Code smell preferences . Ê7

3.1.1. Potential structural problems . Ê8

3.1.2. Code style problems . Ê9

3.1.3. Potential performance problems . Ê9

3.1.4. Potential Programming problems . Ê9

3.1.5. Unnecessary code . Ê11

3.1.6. Repair times of code smells . Ê11

3.2. Organize import preferences . Ê12

3.3. Metrics preferences . Ê13

3.4. Metric limits preferences . Ê13

3.4.1. Project metrics . Ê14

3.4.2. Module metrics . Ê15

3.4.3. Function metrics . Ê15

3.4.4. Testcase metrics . Ê16

3.4.5. Altstep metrics . Ê16

3.5. Metrics view preferences . Ê17

3.6. Project risk factor preference page . Ê17

3.7. Graph preferences . Ê18

3.7.1. General graph preferences . Ê18

3.7.2. Metrics preferences of module graph . Ê20

3.7.3. Cluster preferences of module graph . Ê20

4. Headless mode . Ê26

4.1. Important settings . Ê26

4.2. The general structure of invocation . Ê26

4.2.1. Pitfalls . Ê27

4.3. Clearing all projects from the workspace . Ê27

4.4. Importing projects from .prj . Ê27

4.5. Importing projects from the .tpd . Ê27

4.6. Exporting the detected code smells into Excel files . Ê28

4.6.1. Exporting the detected code smells of a single project into an Excel file Ê28

4.7. Exporting the detected code smells into CSV files . Ê29

4.8. Exporting the measured Metrics data into Excel files . Ê29

4.9. Exporting the module dependency graph . Ê30

4.10. Exporting the component dependency graph . Ê31

4.11. Exporting data for the Titanium SonarQube plugin . Ê31

5. Actions . Ê33

5.1. Editor actions . Ê33

5.2. Project actions . Ê33

5.3. File actions . Ê34

6. Configuring the Problems view . Ê35

6.1. Configuring by hand . Ê35

6.2. Importing a configuration predefined for Titanium . Ê36

7. Organize imports . Ê38

8. Metrics View . Ê39

8.1. Risk highlighting . Ê40

8.2. Jumping to code . Ê40

9. Top Riskiest Modules View . Ê42

9.1. Usage . Ê42

9.2. Colouring . Ê42

9.3. Jumping to code . Ê42

10. The module dependency graph . Ê44

10.1. Introduction to the dependency graph . Ê44

10.2. Usage of the module graph . Ê44

10.2.1. Drawing a graph . Ê45

10.2.2. Interactive events of the graph . Ê46

10.2.3. Module information window . Ê47

10.2.4. Menu functions . Ê48

11. The component dependency graph . Ê55

11.1. Functionality . Ê55

11.2. Interactive actions . Ê55

11.2.1. General actions . Ê55

11.2.2. Graph node actions . Ê55

11.2.3. Menu actions . Ê55

12. Titanium Sonar plugin . Ê57

12.1. Setting up the SonarQube server . Ê57

12.2. Exporting the data from Eclipse . Ê57

12.2.1. On the workbench . Ê57

12.2.2. In headless mode . Ê59

12.3. Load the data on the server . Ê59

12.4. Browse the result . Ê59

13. References . Ê60

14. Glossary . Ê61

Abstract

This document describes Titanium, the Quality Analyzer for TTCN-3 testing software.

Copyright

Copyright (c) 2000-2024 Ericsson Telecom AB.
All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html .

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson shall have no liability for any error or damage of
any kind resulting from the use of this document.

1

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. Introduction

1.1. How to read this document
This description contains detailed information on using the Titanium tool.

This documentation should be read together with the detailed mathematical explanations and lists
found on the projects Sharepoint site .

1.2. Overview of Titanium
The Titanium tool is an Eclipse plug-in, built upon the TITAN Designer for the Eclipse IDE Toolset.
As it extends the TITAN Designer plug-in, the Designer is required to be installed and be present for
the correct operation.

Titanium extends the already existing feature of the Designer with higher level code analysis
features such as:

¥ Detecting and reporting code smells [1] in TTCN-3 and ASN.1 source codes;

¥ Measuring and displaying code quality metrics on TTCN-3 source codes;

¥ Extracting and displaying an architectural overview of the projects;

1.3. General workflow
The workflow of the Titanium tool is extending the DesignerÕs workflow with additional checks and
measurement. As such the integration should be seamless.

The differences only involve the new features provided:

¥ In order to use the code smell reporting most efficiently, the user can configure which code
smells he wishes to be detected and reported.

¥ The metrics view and the architectural display simply needs to be invoked on a project, to
refresh their measurements and contents.

There are three more notes important to know when working with the tool:

¥ The tool does not need to be used in interactive mode. It is perfectly valid to check the quality of
the source periodically, extracting the issues to be solved into tasks for the team working with
the source code. As such it can be used as part of the review process, or the nightly check
system.

¥ It is advised to work in an iterative manner. When a code smell is corrected in some way, it can
happen that this might trigger the detection of new code smells. For example when unnecessary
import statements are removed from the system, it might turn out that some of the modules
were not used in the system at all.

¥ When working with code smells, metrics and architectural level tools it is important to
concentrate on the "larger picture". Correcting these issues on "face value" might hide away

2

https://ericsson.sharepoint.com/sites/DUCI_SW_Technology/Titanium/Wikis/Forms/AllPages.aspx

bigger problems. For example we found a case where unused variables with the same name
were reported several times in a module. This turned out to indicate, that the function they
were contained in were copy pasted, without review.

1.4. The TITAN implementation of TTCNÐ3
The Titanium plug-in is extending the TITAN Designer plug-in, which is an implementation of
TTCNÐ3 Core Language standard ([3]), supporting of ASN.1 language ([4]).

The limitations present in the Designer plug-in also apply here: there are TTCNÐ3 language
constructs which are not yet supported in the current version, while there are also some non-
standard extensions implemented by TITAN. Information on these limitations and extensions and
also some clarifications of how the standard has been implemented in TITAN, can be found in the
TITAN ProgrammerÕs Technical Reference [2] .

1.5. Intended audience
This document is intended for users of the TITAN TTCNÐ3 Test Toolset. In addition to this document,
readers analyzing their codes with this tool are advised to read our knowledge base listing the code
smells and metrics available.

1.6. Presumed knowledge
This document is intended to be read by users already familiar with the TITAN Designer toolset. For
this reason this document includes TITAN related information only when necessary.

The document also assumes that the reader has some level of mathematical and quality assurance
knowledge. For the most optimal usage of the architectural view an architectural mind-set and
point of view is also beneficial.

NOTE

This document does not wish to describe elements of Eclipse or Titan, and how to
use them. Every time such a feature is described, it is done with simplicity in mind,
assuming a minimal level of experience with Integrated Development
Environments from the user. However, it is advised to read the manuals of Eclipse
and Titan Designer (mainly contained in its included help system), because it can
provide better descriptions of the elements.

There are only a few points in this document where Eclipse related information is
separated from toolset related information. This is done so because the plug-in is so
deeply integrated into Eclipse that separating the functionalities cannot be done
without getting into implementation level of details (which the users are not
interested in, and would be probably very confusing for them).

1.7. Typographical conventions
This document uses the following typographical conventions:

3

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
"+" to represent key combinations. For example, Ctrl + Click

The slash (/) character is used to denote a menu and sub-menu sequence. For example, File / Open .

Monospaced font is used to represent system elements such as command and parameter names,
program and path names, URLs, directory names and code examples.

1.8. Installation
For details on installing the Titanium plug-in, see the Installation Guide for TITAN Designer and
TITAN Executor for the Eclipse IDE [1] .

1.9. How to report an error for the tool
The following information should be included into trouble reports:

¥ a short description of the problem;

¥ what seems to have caused it, or how it can be reproduced;

¥ if the problem is graphical in some way (displaying something wrong), screenshots should also
be included;

¥ output appearing on the TITAN Console or the TITAN Debug Console;

¥ contents of the Error view if it contains some relevant information;

Before reporting a trouble, try to identify whether the trouble really relates to the Titanium plug-in.
It might be caused by other third party plug-ins, or by Eclipse itself.

Reporting the contents of the Consoles and the Error log is important as TITAN consoles might
display important debug information. The location on which the Error Log view can be opened can
change with Eclipse versions, but it is usually found at Window / Show View / OtherÉ / PDE
Runtime / Error Log or Window / Show View / OtherÉ / General / Error Log .

[1] Code smells are described in Wikipedia as: "In computer programming, code smell is any symptom in the source code of a
program that possibly indicates a deeper problem. Code smells are usually not bugsÑthey are not technically incorrect and donÕt
currently prevent the program from functioning. Instead, they indicate weaknesses in design that may be slowing down
development or increasing the risk of bugs or failures in the future."

4

Chapter 2. Getting started
This section explains how to setup Eclipse and the TITAN Designer to access every feature provided
by Titanium.

2.1. The perspective
Titanium does not provide its own perspective, since most of its tools are meant to be extensions to
whatever perspective the user is already using.

For those who have not yet used the TITAN Designer before, it is recommended to read chapter
"The TITAN Editing perspective" of the TITAN DesignerÕs user guide on how to set up a default
perspective for working with TTCN-3.

2.2. Setting workbench preferences
This section gives an overview about the various settings related to the workbench provided by the
Titanium plug-in.

In Eclipse, workbench preferences are used to set user specific general rules, which apply to every
project; for example, preferred font styles, access to version handling systems and so on.

Workbench preferences are accessible selecting Window / Preferences . Clicking on the menu item
will bring up the preferences page. The opening window contains a preference tree on the left pane
to ease navigation Ð see Figure 1.

Figure 1. Titan preferences sub-tree

This section only concerns the preferences that are available under the TITAN preferences node of
this preference tree.

2.3. TITAN preferences

5

Figure 2. TITAN Preferences

For the correct operation of the Titanium plug-in it is necessary to set the license file preference of
TITAN. If this is not set the TITAN Designer plug-in will not do semantic analysis, which also stops
the Titanium plug-in as there will be no semantic data to work on.

Although not required it is recommend to set the maximum number of build processes to use
option to the number of processing units in the machine, to reach optimal speed.

NOTE

In case the license file is not provided, is not valid or has expired an additional link
will appear on this page. Clicking on this link a browser will open directing the user
to a web page where he can order a new license or can ask for a renewal of his
existing one.

6

Chapter 3. Titanium preferences
This section introduces the preference pages where one can control the behavior of the views and
other features provided by the Titanium plug-in.

3.1. Code smell preferences

Figure 3. Code smell preferences

Code smells are indicators of suspicious code that is not erroneous (i.e.Êthe code compiles), but most
of the times they are not preferable. In this preference page, one can control the way of reporting
the available code smells.

The first item on this page is the option to enable on-the-fly processing. When this option is enabled
the code smells will be checked immediately after whenever the DesignerÕs on-the-fly analyzer
executes. When this option is disabled the code smells have to be explicitly requested by the Check
code for code smells action on the menu bar.

The reporting level of all code smells is configurable to be Ignore , Warning or Error . Code smells
set to be reported as Ignore will not be analysed and reported. Code smells configured to be
reported as Warning or Error will be reported with that severity level.

The code smells are categorized in 5 categories based on what kind of issue they are pointing at.

7

3.1.1. Potential structural problems

The code smells here might indicate some kind of architectural issue in the code.

¥ Report the usage of label and goto statements : go to statements and labels usually indicate
incorrect programing practices. Developers are encouraged to used elements of structured
programming practices.

¥ Report private component access from other module : report instances when a private
component variable is accessed from a function located in a different module, but running on
that component.

¥ Report operations which are not safe in blocking statements : reports the usage of
operations, that are not safe to be used in blocking statements.

¥ Report circular module dependencies : Report the case when module imports form a circle.
This situation slows down the parallel build, and might disable compilation in some cases.

NOTE
The algorithm will not report all circles, in a few cases where a small circle is
embedded in a larger one, both of them cannot be detected at the same time.

¥ Report modules with different language specifications : Report the case where the TTCN-3
modules of a project donÕt all have the same language specification. This situation invites
confusion, misunderstandings and also indicates the need to updated some of the dated
modules.

NOTE TITAN does not support these language restrictions.

¥ Missing imported module: A definition could not be resolved using local and imported
definitions, but could be resolved by importing another module.

¥ Report unused module importation: The reported importations are not needed, as none of
their declaration is referred.

¥ Report friend declarations with missing modules: The module referred as a friend module is
missing.

¥ Report TTCN-3 definitions that could be private, but are not set so : Detect and report
definitions that are only used inside their own module, but are not declared private. This
situation allows for external modules to refer to these definitions, making them part of the
moduleÕs public interface (which it might not have been intended to be a part of).

¥ Report visibility settings mentioned in the name of definitions : Detects the cases when
visibility names are mentioned in the name of the definition. If this meant to serve as a
protection mechanism against misuse it would be better to use the actual visibility attribute. In
that case the compiler would be able to automatically check the correctness of its usage.

¥ Report runs on scope reduction : Detect the cases when the component in the runs on clause of
a functions/altstep/testcase could be reduced.

¥ Report unusable connection : Detect connect statements where it is not possible to send or
receive any message, even though the connection is otherwise perfectly valid.

8

3.1.2. Code style problems

Code smells in this category indicate some issue in coding style.

¥ Report unnecessary negations in if statements: When the condition of an "if" statement is
negated, while it has exactly two branches.

¥ Report if the name of the module is mentioned in the name of the definition : In TTCN-3 it is
supported to refer definitions in a module name prefixed way. In cases the module reference
notation is not needed, this naming style only makes the name longer.

¥ Report if the name of the type is mentioned in the name of the definition : In repeating the
name of the type of a definition in the definitions name is a convenience method, but in some
cases this makes the name of definition very large without adding any information.

¥ Report magic constants: an integer higher than 5 or any string literal.

¥ Report if the attributes are being overridden : When attributes are being overridden.

3.1.3. Potential performance problems

Code smells in this category might indicate some codes with performance problems.

¥ Report infinite loops: When there is no way to escape the loop.

¥ Report uninitialized variable: variable defined without initial assignment. Usually these
variables are assigned a value later, but initializing at creation time is more efficient.

¥ Report size check in loop condition: The conditional part of loops is checked every iteration.
In case the loop is iterating on a fixed sized list, the checking of the size in every iteration only
wastes resources.

¥ Report consecutive assignments: Multiple consecutive assignment statements to the same
definition are not optimal. They should be merged into one statement. Lower limit can be set
for the number of consecutive assignments to be marked as a code smell. Default value is 4.

¥ Report proper usage of @lazy modifier: In parameters are not always optimal. If an in formal
parameter is only evaluated in some special cases declaring it lazy might provide a
performance improvement.

3.1.4. Potential Programming problems

Code smells in this category indicate issues related to bad or misunderstood architecture. Usually
these issues also indicate maintenance problems in the future.

¥ Report read only variables: a local variable, an out- or an in-out parameter of a function is
never written. These variables could be constants instead, or might have been designed to be
assigned a value.

¥ Report TTCN-3 definitions that have too many parameters: When a function has too many
parameters it becomes hard to invoke it. This might be a good indication that the function is
doing too much work on its own. Limit can be set, default is 7.

¥ Report TTCN-3 expressions that are too complex : When an expression is too complex it
becomes more likely that it is also incorrect. Limit can be set, default is 3.

9

¥ Report empty statement blocks: a statement block without any statement might indicate
missing functionality.

¥ Report statement blocks that have too many statements : When there are too many
statements in a block it might indicate, that it is doing too much work, and become too complex.
Limit can be set, default is 150.

¥ Report too big or too small shift and rotation sizes : When the argument is larger than the
length of the string or smaller than 1, the rotation might be incorrectly designed.

¥ Report conditional statements without else block: An "if" statement without else branch. In
tests this might indicate, that the incorrect parameters or values were not logged.

¥ Report switching on Boolean value: select statement on boolean argument.

¥ Report setverdict without reason: The setverdict statement is used without telling the reason
in a parameter.

¥ Report uncommented functions: procedures without documented headers.

¥ Report stop statement in functions: Functions whose body contains stop statement, which
will stop the testÕs execution without releasing resources and driving the SUT in correct state.

¥ Report unused function return values: function return value is not used, or function is
started on component without being able to retrieve any return value.

¥ Report starting functions with out inout parameters: when starting a function with out or
inout parameters, the resulting values of those parameters will be lost.

¥ Report receive statements accepting any value : the alt branch has a receive statement that
accepts any value, but uses value redirection.

¥ Report insufficient altstep coverage: When an altstep or alt statement might receive a
message type without having a corresponding alt branch that could accept.

¥ Report alt branches that should use alt guards: When an alt branch starts with an if
statement, it should be considered whether an alt guard could be used instead of the conditional
statement.

¥ Report alt branches that should use receive template: When an alt branch redirects the
received message to a variable, and later it is used in a `match' operation.

¥ Report the usage of shorthand statements: The shorthand timeout, receive, trigger, getcall,
catch, check, getreply, done, killed statements should not be used inside a function, testcase, or
altstep without the `runs on' clause, except for when the shorthand statement is located inside
an alt statement, because an activated default can change their behavior.

¥ Report the usage of isBound without else branch: isbound, ispresent and ischosen are used to
check the existence of some states or objects. In test systems it is valuable to log some
information in the else branch about why it failed the test.

¥ Report the usage of non-enumeration types in select statements: Select statements should be
used with enumerations. Branch coverage cannot be calculated on select statements used with
other types.

¥ Report insufficient coverage of select statements: When a select statement is used with an
enumeration type and not all the enumeration items are covered with the case branches. If the
select statement has an else branch or a branch with an unfoldable value, the statement will not

10

be marked as a code smell.

¥ Report disordered cases of select statements: When a select statement is used with integer
type and the cases are not listed in increasing order. If the select statement has an else branch
or a branch with an un-foldable value, the statement will not be marked as a code smell.

¥ Report the usage of isvalue with a value as a parameter: isvalue check on a value always
returns true. Isbound should be used to check existence.

¥ Report possible iteration on wrong array: This code smell is marked, when an array that
differs from the array used in the final expression of a loop is indexed with the loop variable.

¥ Report reading out parameter before assigning a value to it: An out parameter of a function
might be uninitialized before its first assignment. Reading the parameter before that, can cause
problems.

¥ Report the usage of groups without any attributes: Group(s) created without any attributes.

3.1.5. Unnecessary code

Code smells in this category indicate pieces of the code, which is not used.

¥ Report unused module level definition: a definition is never referred.

¥ Report unused local definition: local definition is never referred.

¥ Report unnecessary controls: for example a branch of an if statement is unreachable, as the
condition is known at compile time.

¥ Report unnecessary "valueof" operation: value of is applied to a value itself, like
"valueof(42)".

3.1.6. Repair times of code smells

In this section you may set the repair time values of the signed problems. Normally these values are
set according to developers, who gave us estimated repair times.

Repair times are used upon exporting code smells to CSV format. The repair time tells how long it
takes to fix one problem of a certain type. You may set minimal, average and maximal repair times
for each problem. In these fields only floating point numbers are accepted.

11

Figure 4. Repair times of code smells

3.2. Organize import preferences

Figure 5. Organize import preferences

This page let you set the behaviour of import organization.

¥ Add the necessary module where missing reference is found: When checked, appropriate

12

module importations will be added to the file when organize action is called. In case of
ambiguous identifier, the user is asked interactively to decide.

¥ Remove unused imports: When checked, this action will remove those import statements,
which import a module whose definitions are not referenced in the importer module.

¥ Enable sorting: When checked, import statements will be placed in the beginning of the file,
sorted alphabetically.

¥ Method of change:

! Simple: Removed importations are deleted from the file; added importations are inserted
without any comment.

! Comment: Removed importations are commented out; added importations have a short
comment noting the definition that induced the module to import.

3.3. Metrics preferences

Figure 6. Metrics preferences

This page gives a short overview about the following subpages that are related to the metrics.

3.4. Metric limits preferences

13

Figure 7. Metric limits

This page provides the possibility of fine-tuning the metric highlight mechanism. Metrics generally
work as follows:

¥ A metric calculates a concrete value for the measured entity (for example, the Number of
functions metric counts the number of functions in a TTCN3 module.

¥ When set, classifies this value as NO, LOW or HIGH risk.

Some metrics have default pre-set limits, but here they can be customized. First, a method of
warning has to be selected:

¥ Never warn: the metric will never classify anything as "suspicious". In the Metrics View, in the
Top Riskiest Modules View and in the Module Graph View this metric will show everything in
green colour.

¥ Low risk: the metric will classify entities to be "a bit suspicious", if the measured value is above
a set limit. These entities will be shown in yellow colour.

¥ High risk: the metric will classify entities to be "really suspicious", if the measured value is
above a set limit. These entities will be shown in red colour.

¥ Tri-state: this metric will require two limits to be set. If the measured value is under the first
limit, then the entity is considered to bear no risk. If the value is above the second limit, then
the entity is considered to be "really suspicious". Finally, if the value is between the two limits,
then it is considered `a bit suspicious'.

After choosing the method, the values of the limits can be set.

Metrics are separated by the entities they measure.

3.4.1. Project metrics

These metrics collect information about the whole project.

14

¥ Number of TTCN3 modules: counts the number of TTCN3 modules in the project. Default:
Never warn .

¥ Number of ASN1 modules: counts the number of ASN1 modules in the project. Default: Never
warn .

3.4.2. Module metrics

These metrics collect information about each module of the project.

¥ Number of functions: counts the number of functions in a module. Default: Never warn .

¥ Number of testcases: counts the number of test cases in a module. Default: Never warn .

¥ Number of altsteps: counts the number of altsteps in a module. Default: Never warn .

¥ Internal feature envy: counts the number of references to entities inside the module. Default:
Never warn .

¥ External feature envy: counts the number of references to entities outside the module.
Default: Never warn .

¥ Fixme comments: counts the number of comments beginning with "FIXME". Default: Low risk
above 1.

¥ Imported: counts the times the module was imported by other modules. Default: Never warn .

¥ Imports: counts the number of module importations in the module. Default: Never warn .

¥ Efferent coupling: counts the number of referred assignments that are defined outside the
module. Default: Never warn .

¥ Afferent coupling: counts the number of assignments in the module that are referred by other
modules. Default: Never warn .

¥ Instability: Measures the efferent to (efferent plus afferent) coupling ratio. This metric can be
used to separate library-like modules (defining types, functions, altsteps used by other modules)
and high-level modules (defining test cases, high level behavior of the test). Low values of this
metric (near 0.0) indicate a high level module, while high values (near 1.0) indicate that the
module is used as a library. Both situations feature a well-structured module. However, when
the value of the metric is midway between the two edges (near 0.5); it is a sign of instable
module that might be worth separating to two modules. Default: classify to Low risk when the
value is between 0.3 and 0.7.

3.4.3. Function metrics

These metrics collect information about each function.

¥ Number of parameters: counts the number of formal parameters in the function definition.
Default: No risk under 5, Low risk between 5 and 7, High risk above 7 parameters.

¥ Lines of code: counts the lines of source code of the function. Default: No risk under 100, Low
risk between 100 and 150, High risk above 150 lines.

¥ Cyclomatic complexity: Cyclomatic (or McCabe) complexity of the function. Basically, it is the
number of control structures (loops, if branches, etc.) in the code. Default: No risk under 10,

15

Low risk between 10 and 20, High risk above 20.

¥ Nesting: counts the maximal number of nested blocks in the code. Default: No risk under 4,
Low risk between 4 and 6, High risk above 6 nested blocks.

¥ Return points: counts the number of exit points in the functions (i.e.Êthe return statements, and
the end of functions). Default: Never warn .

¥ Default activations: counts the maximal number of default altstep branches that can be
activated during the function call. Default: Never warn .

¥ External feature envy: counts the number of references in the function body to entities inside
the module where the function resides. Default: Never warn .

¥ Internal feature envy: counts the number of references in the function body to entities outside
the module where the function resides. Default: Never warn .

3.4.4. Testcase metrics

These metrics collect information about each test case.

¥ Lines of code: counts the lines of source code of the test case. Default: No risk under 100, Low
risk between 100 and 150, High risk above 150 lines.

¥ Cyclomatic complexity: Cyclomatic (or McCabe) complexity of the test case. Basically, it is the
number of control structures (loops, if branches, etc.) in the code. Default: No risk under 10,
Low risk between 10 and 20, High risk above 20.

¥ Nesting: counts the maximal number of nested blocks in the code. Default: No risk under 4,
Low risk between 4 and 6, High risk above 6 nested blocks.

¥ Number of parameters: counts the number of formal parameters in the test case definition.
Default: No risk under 5, Low risk between 5 and 7, High risk above 7 parameters.

¥ External feature envy: counts the number of references in the test case body to entities inside
the module where the testcase resides. Default: Never warn .

¥ Internal feature envy: counts the number of references in the test case body to entities outside
the module where the testcase resides. Default: Never warn .

3.4.5. Altstep metrics

These metrics collect information about each altstep.

¥ Lines of code: counts the lines of source code of the altstep. Default: No risk under 100, Low
risk between 100 and 150, High risk above 150 lines.

¥ Cyclomatic complexity: Cyclomatic (or McCabe) complexity of the altstep. Basically, it is the
number of control structures (loops, if branches, etc.) in the code. Default: No risk under 10,
Low risk between 10 and 20, High risk above 20.

¥ Nesting: counts the maximal number of nested blocks in the code. Default: No risk under 4,
Low risk between 4 and 6, High risk above 6 nested blocks.

¥ Branches: counts the number of branches in the altstep definition. Default: Never warn .

¥ Number of parameters: counts the number of formal parameters in the altstep definition.

16

Default: No risk under 5, Low risk between 5 and 7, High risk above 7 parameters.

¥ External feature envy: counts the number of references in the altstep body to entities inside
the module where the altstep resides. Default: Never warn .

¥ Internal feature envy: counts the number of references in the altstep body to entities outside
the module where the altstep resides. Default: Never warn .

3.5. Metrics view preferences

Figure 8. Metrics view preferences

This page configures the contents of the Metrics View. Only the metrics checked will be displayed in
the view.

By default, all metrics are checked, therefore visible in the Metrics View.

3.6. Project risk factor preference page

17

Figure 9. Project risk factor preference page

The project action of exporting the code smells to an excel sheet (see here) classifies the project
quality according to a method described in [5] . The parameters of this algorithm can be fine-tuned
here.

3.7. Graph preferences

3.7.1. General graph preferences

At the Titanium Preferences/Graph page (see Figure 10) it is possible to set some parameters that
are related to all the graphs. Currently this page provides two settings, as you can see on the figure,
these are:

¥ Maximal number of iterations : This parameter sets the maximal number of iterations (cycles)
used to have a stable place for all nodes. If this limit is reached the nodes will not move
anymore, however the provided place for the nodes may not be the optimal according to the
used layout algorithm. A smaller value will allow the algorithms to finish much sooner, but the
drawback is that in those cases the structure might not be that much visible.

NOTE
This setting applies only to certain algorithms that have such a settable value. At
the moment this means Fruchterman-Reingold and Kamada-Kawai algorithms.

¥ Directed layoutÕs distance: The General Directed Graph and Reverse Directed Graph
algorithms do not only order the nodes by a hierarchical level, but they also try to find an
optimal vertical order for the nodes on a given level. But this ordering depends on how we
define the distance of two nodes (this is usually related to the incident edges). To use a certain
notion of distance you can choose here. The first option is Sum of distances this means that we
measure the Euclidean distance for all the related edges, and try to minimize the sum of these

18

distances. The second choice is Maximal distance. This means that we measure the Euclidean
distance for all related edges again, but the actual distance will be defined as the maximum of
these values. The ordering algorithms try to minimalize this distance value. So changing this
parameter may change the vertical ordering. In different cases different distance notion can be
useful. If you do not know which one to use you could try both, and decide later which one
looks better to you.

NOTE
The better algorithm may also depend on the actual structure of the drawn
graph.

For further information about graph layouts see the Chapter The module dependency graph .

Figure 10. Graph preference page

19

3.7.2. Metrics preferences of module graph

Figure 11. Module graph metrics preferences

This page is similar to the Metrics View preferences, but controls the set of metrics available in the
Module Graph View.

By default, all metrics are checked, therefore can be selected in the Module Graph View.

3.7.3. Cluster preferences of module graph

20

Figure 12. Module graph preferences

This page gives a short overview about the available clustering tools. The settings for these tools
can be found on the subpages.

See here for more details about how clustering the module graph works.

Preferences of the automatic clustering tool

21

