�

Edinburgh�University�Computing�Service

�MSMS front end tool

MSMSFE

Final Report

Eddie Corns

�date \@ "d MMMM, yyyy"�1 August, 1995�

Edinburgh University Computing Service

James Clark Maxwell Building

Kings Buildings

Mayfield Road

Edinburgh

EH9 3JZ

United Kingdom

Copyright Notice

�SYMBOL 211 \f "Symbol"� Computing Services, The University of Edinburgh.

All rights reserved. No part of this publication may be reproduced in any material form without the written permission of the copyright holder.

These rights are waived in two particular circumstances. First, academic institutions may freely use and copy the material herein for an academic (i.e. non-commercial) purpose. Second, the sponsors of EMWAC may freely use the material for their purpose.

�

� TOC \o "1-3" �Introduction	� GOTOBUTTON _Toc331927762 � PAGEREF _Toc331927762 �4��

Overview of MSMS	� GOTOBUTTON _Toc331927763 � PAGEREF _Toc331927763 �4��

Project goals	� GOTOBUTTON _Toc331927764 � PAGEREF _Toc331927764 �5��

Design Issues	� GOTOBUTTON _Toc331927765 � PAGEREF _Toc331927765 �6��

Progress and Experience	� GOTOBUTTON _Toc331927766 � PAGEREF _Toc331927766 �10��

Design details	� GOTOBUTTON _Toc331927767 � PAGEREF _Toc331927767 �14��

Tables	� GOTOBUTTON _Toc331927768 � PAGEREF _Toc331927768 �14��

Forms	� GOTOBUTTON _Toc331927769 � PAGEREF _Toc331927769 �14��

Queries	� GOTOBUTTON _Toc331927770 � PAGEREF _Toc331927770 �15��

Macros	� GOTOBUTTON _Toc331927771 � PAGEREF _Toc331927771 �15��

Modules	� GOTOBUTTON _Toc331927772 � PAGEREF _Toc331927772 �16��

Conclusion	� GOTOBUTTON _Toc331927773 � PAGEREF _Toc331927773 �17��

Appendix A	� GOTOBUTTON _Toc331927774 � PAGEREF _Toc331927774 �18��

Appendix B	� GOTOBUTTON _Toc331927775 � PAGEREF _Toc331927775 �22��

��Introduction

This document describes the MSMS front end project MSMSFE. The purpose of the project is twofold. Firstly, to create an extremely simplified interface to the MSMS facilities, secondly to allow an MSMS administrator to give this same interface to people who may need to examine the inventory information but who should not have access to the control aspects of MSMS.

The goal of the project is to create a ‘visual’ interface to the MSMS inventory data using mostly a mouse with some form of windows and command buttons.

Overview of MSMS

The MSMS system consists of an active component which polls machines on the network for system data and a passive database which holds this information. There is also an administration program which can be used to view the information in the database and to control operations.

In this project, we are primarily interested in the the inventory information from the database. This contains details of installed software and hardware amongst other things on each of the polled machines. This information is stored in several disparate SQL tables related in complex ways. Because of this complexity and also to allow Microsoft to change the database without impacting too much on end users, SQL views can be created to bring the tables together in a more managable way. The views in fact correspond very closely to the “properties” groups as used in the MSMS administrator program.

�Project goals

The goals for this project were to provide:

Operations for non technical staff to get useful data from the MSMS database

A simple interface to support these operations

A degree of flexibility in what operations can be performed

Some extensibility if possible

When we were asked to create this tool, we expected that “useful” might constitute operations like:

Configuration problems

Less than a certain amount of memory

Not the latest processor

Software package management,

Missing packages

Out of date packages

Costing

Cost to upgrade all Macs in department to new ether cards

The information to do all this is in the MSMS database, however to extract this information requires a knowledge of how the database is organised and how to formulate a query in SQL. So our plan was to use a visual interface tool to create a set of click buttons that would perform the more useful operations that an administrator might need using preconfigured queries.

We also wanted the interface to be extensible and flexible if at all possible. For instance most of the operations would be preconfigured but it would be nice if, like the administrator program, a query could be built up by the user selecting certain fields and criteria to match them, at the very least to provide fill-in boxes to parameterise the query.

In the end the final product was significantly different from what we envisaged. There were various reasons for this, partly due to the lack of user input and partly due to the abilities of the underlying tool.

The final product would not in any way replace the MSMS admin tool which provides access to more information and can also be used to build more complex queries. Although one area where we can definitely improve on the admin tool is in the information returned. The admin tool after performing a query will only ever return the list of machines that matched the query.� Our interface will return information related to the query. For example if the query was to find all machines with less than a certain amount of memory then it would actually display the amount of memory alongside the name of the machine. Furthermore we can re-organise the results data to show the worst affected machines first and also split the results into more managable chunks (eg by department).

�Design Issues

We expected that after making the intial tentative decisions about how the product may look, it might undergo radical changes as we gained experience and from the feedback we hoped to gain from polling potential users. At the outset we had merely the notion that there would be queries attached to some buttons that when activated made the results appear. In this section we describe how the design evolved.

When deciding how to build the tool, we were advised locally that Access 2.0 would be a suitable platform. The idea of using Visual Basic was also discussed but we decided there would probably be too steep a learning curve for that, given the timescale of the project. Consequently we chose Access.

Our initial impression of the MSMS database contents was:

A set of views containing data about the machines.

Each view contained a unique machine ID and some related information. One of the views contained human readable system identification so this would be involved in most of the queries.

A set of tables containing: the data in the above views, history for same, self describing tables (eg human readable names of fields) and tables for other data which we had not yet explored.

Access has facilities to:

create and execute a database query

show the contents of a table

create forms (windows) that can:

display the results of a database query

view tables

display buttons with commands attached to execute queries or pop up other forms.

Initially we were thinking in terms of presenting the same sort of information as the MSMS admin tool’s browser. Thus we did not explore some of the other available data in the MSMS database such as Alerts.

The design then would be a simple case of defining queries over the given views to extract the data the users requested, create forms with command push buttons to activate these queries which in turn causes a query result window to pop up.

Early experimentation showed that the query results window had a fixed layout that could not be further manipulated to organise data. The design was then modified such that the command buttons would open a specially designed form for each query.

So the general organisation was to create forms with command buttons, each command button causes another form to pop up with either the results of a query in a nice format or another set of command buttons. The forms displaying query results could be switched between “datasheet view”, which list all results in spreadsheet format or “form view”, where only a single result is visible and the layout can be controlled.

The datasheet view looks identical to the query result but in this case it is possible to re-arrange data by sorting or filtering columns. Each machine takes up one line so several can be seen at once.

In form view only the details of one machine are visible and it is necessary to step through each one using the navigation controls. Form view allows us to hide information that is not necessary for the user and to add extra fields including control buttons. We use a control button on any form that displays a machine name to pop up the browser that shows the currently selected machine in more detail. Thus we go from the top level of “find all machines that match a certain criteria” through to looking at the detailed information of a particular machine.

Although most operations work on the basis of returning a list of machines and the data associated with the query, sometimes it is useful to simply have a count of matching entries. Thus we can create a form which allows the user to find out how many machines are running a given operating system for instance. For these we can create forms where the answer is written into a box on the form itself rather than having to pop up a new results form.

In many instances, the user is asked to fill in a value to match the characteristics of a machine in a query, for instance the name of the operating system the machine is running. We can improve user friendliness by having the form query the entire database for all known operating systems and allowing the user to choose the appropriate one from a drop down menu. This is quite important in fact, otherwise users need to remember that, for instance, “MS DOS” must be spelled with the space and in upper case. This does take some time on a large database but if the form stays open the results are cached.

Initially we anticipated that usage of Access Basic would be limited to a few calculations on specialised queries such as “evaluating the cost of upgrades by finding the number of machines requiring, say, a new type of card” and supplying a cost per card. We expected that the GUI would be doing most of the work and so there would be little, if any, need for code in the interface.

This really was as far as we needed to go in terms of design mechanisms because it would support all the features we anticipated. However we thought it possible to create a more sophisticated environment and decided to experiment with creating more advanced features. What we wanted to achieve was a general purpose query builder similar to the one in the admin tool. This would involve allowing the user to click on field names and select an operator and a value to match. This came unstuck partly because at this early stage there was not enough experience with Access Basic and also partly because it involved using tables we weren’t supposed to use.

We also investigated the possibility of creating filters. The idea here was that after doing a result the user could refine the output list to restrict the size to a managable portion or perhaps to a more relevant portion (say just one department). The filters provided by Access were no use for this purpose because they always forced a re-evaluation of the original query on which to apply the filter so it is not possible to do successive operations.

However the data that we wished to filter resided in an internal Access table called a dynaset, since this is not a real table there is no way to do any operations on it. This meant we had to then consider the idea of copying the results of the original query to a local table before processing (and displaying) it. This was something we had been reluctant to do early on because there seemed to be no robust way of managing these ‘temporary’ tables. However with the filter there was only the real need for one table so we could use the same one all the time.

Early attempts at the filter consisted of creating a very large form with groups of input boxes for a restricted set of operations. So there would be a group of fields related to say domain, the user could enter values in the domain or site name boxes and remove/keep entries matching those values. This approach whilst being OK in the small scale, soon became cumbersome when applied to a more realistic set of inputs. Also it began to hit limits on the number of tables that ODBC could deal with.

However from this a new idea was formed. Instead of trying to operate directly on the MSMS views we decided to use a local table with a working set of machines on which to perform query operations. We needed a set of filters that could manipulate this working set based on common criteria and some query forms to build simple queries. Thus the user can decide which machines are of interest then do a query on just those machines.

Because of the dynamic nature of this approach it was necessary to start making more use of Access Basic, mostly to build up SQL strings based on the selected values on a form. Ensuring that the input boxes on each form followed a strict naming convention and that these names were further related to some field in each view, we were able to restrict it to only two major routines (one for filters and a similar one for queries).

The working set of machines simply needs to be a local table with a list of machine IDs. Filter operations can be achieved by doing SQL deletes on this table. The query operations will then use the SQL select string built up from the Basic code and apply it to the entries in the MSMS views that match the entries in the working set table. Rather than using the result directly we again copy them to a local table so that we might remove the NULL entries that were causing us problems (see later).

This diagram shows the relationships between the various tables and forms:

��

�

���

���

�����

�

��������

���������

��			

����

Another feature we added after a user request was a history mechanism. Since we have no access to the history tables in MSMS we created a simple solution that tracked when each machine was first and last seen. This data is kept in a local Access table which is not ideal since it will not be shared by other users but it was deemed adequate by the requesting user. The table is filled by a user action so the time registered for a machine appearing is the time when the user invoked the action to find new machines.

�Although this ultimate design allows the user a fair amount of flexibility in the lookups they can perform, it is by no means a comprehensive set of operations. There are many operations that cannot be performed, for instance because each filter is based on one type of data (eg domain or hardware) it is not possible to filter on data across two filters. Nor is it possible to add machines to the working set, only to delete them. A complete tool would add these features but not in the timescale of our project.

One problem in the final design was that, for some reason, Access was locking the tables involved in the final display (even though they were read only) and since one of the tables is always the temporary table then there can only ever be one result window active at any time (this may have been solvable but a solution could not be found in the manuals).

By the time of the finished product we had effectively used Access as a version of Basic with some rudimentary features to open/layout windows and to display spreadsheets.

�Progress and Experience

The first stage was familiarisation with the inventory portion of the MSMS system itself. This involved reading the manual and experimenting with the admin tool. Mostly this was straightforward enough but we did run into an area of confusion early on which caused us significant delay. The manual describes the various property groups associated with the controlled machines but when we came to use the interface we found that some of the groups were missing. One group in particular, the software packages, was deemed important enough that there would be no point to the project without it. We asked Miscrosoft for some help on this matter which never came. Later on we realised that the system didn’t create some database tables until there were any actual entries to put in them. This cost us some wasted time which could have been easily avoided if either the documentation was better or if Microsoft had responded to our question.

At the same time we were trying to understand how the MSMS database worked. The manual has very little information on this other than describing how to create the views. It did not actually say that these views were the way we were supposed to view the database, only that they would make it easier. Nor did it warn us about the fact that some table entries may not be present and hence the views would not appear.

The views themselves, although useful, did present a few problems. First, they are far from representing a complete view of the database, there is information in the database we would have liked to be able to use in our final product but were unable to. Secondly, the way the views are defined with outer joins caused problems because queries would often create tables with many NULL entries. This often meant having to do two passes on the data which added a layer of complexity by having to deal with temporary tables.

The bulk of the work of course was using Access so the next stage was to learn about this. Early experience was encouraging, it was indeed quite simple to build queries to extract information and create forms with buttons that would invoke these queries. However we soon started to run into problems. For instance we discovered that the results from a query were not able to be further operated on, we felt it would be useful to sort the data on different fields, this could be used to locate the most critical machines at the top. there seemed to be no logical reason for this omission. We felt this was important and tried to find ways round it.

Before using Access with the MSMS system it was necessary to install ODBC. This should have been an easy operation but no matter what we tried we could not get through to the remote database. It turned out that we had been given the wrong version of ODBC. There was certainly no way this was obvious from the error messages from Access or ODBC.

A small prototype with just a couple of buttons with associated queries was put together. This was reasonably successful but did show up the problem of extra NULL entries caused by the outer joins. The effect of outer joins is that when two or more views that are defined by outer joins are used together in one query, then instead of getting back just a list of records that match the query, all records are always returned. What happens is that the fields in the record that failed the match come out as NULLs. Thus if the database holds 200 machines and a query is supposed to find three of them then those three will be hidden amongst the total of 200.

�A message was sent to Microsoft asking about this, again no response. From local advice and research we concluded that this was a natural consequence of using outer joins and as such was something we would have to live with.

We prepared an RFC to solicit ideas from potential users as to what features they would like to see in our product. The document was sent to several Microsoft related discussion lists. The full listing is included in Appendix A. We got very little response to this document, the complete list is in Appendix B. It is perhaps not surprising there was little response, MSMS is still a new product and few people will have yet worked out what thay can do with it.

While we were still waiting for user input about the functionality we started to investigate the possibility of building a general purpose query builder similar to the one in the MSMS admin tool. With this we hoped to create a tool where users could select the items to look up in the database (there are internal records with human readable names�) then select matching operations and possibly joining the match with other matches using AND and OR etc. However it became obvious that such a task would be overwhelmingly large considering the built in GUI devices available so this task was not completed.

The official release of the MSMS system arrived and was installed. The only impact this had was that we hadn’t yet figured out about the missing tables etc. and so spent some time trying to work out if they were in the new system.

Shortly after this we learned why some of the property groups were not appearing in the admin tool. Doing some intensive investigation with the internals of the database allowed us to work out how this impacted our view of it. Also at this time we managed to get a couple of real clients that we could poll to get some actual data in the database to check against.

The next stage was to use forms to display the query results. When a query is invoked, Access automatically opens a spreadsheet like display with the results. However the same query can be used as the source of data for a form. A form is usually designed to view one record at a time with the fields of interest being laid out for best advantage. Forms also allow the records to be sorted which has several uses. This sorting feature is what we had been looking for earlier. Then we discovered that forms can also be switched to the same datasheet and the sorting operations were still available. Thus we realised that we would have to always use forms to display all results.

Part of the feedback we got at this point was some unofficial help from Microsoft employees in the US. From them we learned about the internals of the database being restricted. After some debate we decided that though we could build a better product using the internals we could still create a useful system using just the views. So we abandoned all ideas that depended on the internal structure.

A visit from a Microsoft technical engineer helped us with some of our remaining problems (we’d solved most of the technical ones ourselves the hard way) and also supplied us with a large database against which to test the software.

Unfortunately we did not receive much at all in the way of user feedback for the actual requirements. It was decided that this was not an appropriate task for us to take on for ourselves. So we were in a situation where we could build the desired interface but with no firm ideas for what to put in it. To solve this we started another approach similar to the previously abandoned query builder but less ambitious in scope.

The idea behind this was that a large control panel would contain a subset of the available fields in views and the user could select which fields to base a query on and which values to match against. Early trials of this idea were encouraging but again the actual delivery was very unwieldly in Access. However some experiments with splitting it up into smaller control panels and attaching some Access Basic code showed that this could produce a useful system. At this point we should really have stopped work as the time had run out. We were faced with the choice of simply building up the original click button interface which we knew how to do, all that was required was to invent some “useful” operations. Or we could finish off the new approach which would, we believed, offer a much better end product.

We decided to press on with the new approach because it would hopefully not be too far behind schedule even though this meant allocating more time to it than was supposed to have been given.

Having worked out the general principles all that was needed was to apply them to each of the forms and write the code for it. This was mostly straightforward but time consuming because of the number of forms, the attention to detail required to make the solution generic and having to spend a lot of time with the manuals. There was some problems due to some of the forms being more complex than the original prototype but these were ironed out and some initialisation code was written and the product was ready for beta testing.

Before sending it out a user guide was prepared. It and the Access module were put onto the EMWAC distribution system and a message sent to several likely newsgroups and distribution lists to request beta testers.

A few responses came back from users who users who had picked up the distribution but were having difficulties loading it. Most of these were a result of an omission in the documentation about configuring ODBC to recognise the MSMS database. Even once this was cleared up some users found it difficult to get connected but we did eventually get them all going.

After that we had feedback from only one user. His remarks highlighted a problem in the design. The user reported that if more than one person tried to use the system in a shared manner then all but one of them was locked out from using the temporary tables which the queries are built on. We hadn’t realised that the local table would be visible to all people sharing the database and because the results tables in Access are always “views” onto the underlying data then it has to protect that data from changing. Our problem was that we need to delete the temporary table before the start of each operation and this is not possible with the table locked.

The only solution to this would be to add extra information to the tables to indicate which user was requesting the data but this has several problems. Firstly, it goes right back to the problem of trying to manage all the temporary data so that it could be deleted when finished with, this was the reason for using a single table in the first place. Secondly, it makes the local tables potentially a lot bigger and requires more operations for each query, hence slowing down every single user operation. The problem would not have arisen if we did not have to filter out the NULL entries but this would be worse than the single user limitation. Unless there was some other way to solve this without using local tables.

While the product was in Beta test, we changed the installation code. The original version simply attached all the views it could find but this is not very user friendly because it could fall over later on if a vital view was missing. So we changed the code to only look for and load certain tables which are actually used. This was not good enough either because some sites may be missing some views which, although used by the tool, are not that important. So a two stage process was created where it would try to load the essential views first, if this failed it would not complete the installation process. Then it would try attaching the non-essential views, if any of these failed the relevant button on the browser is disabled. This should present unfriendly warning messages from appearing.

�Design details

This section describes the tables, forms, queries and macros used in the final product. First an explanation of what each of these devices are used for, then the individual details.

Tables

The tables hold all the data needed, both internally and in the MSMS database. Most tables are “virtual” tables that are mappings to external views of the MSMS data. The uses of the local tables are:

TABLE	Description

tempo1 	the filtered list of machine IDs

tempo2	the result of any query operation to be displayed

MachineHistory 	list of machine Ids and when they first appeared on the network

reqd_views	The names of all the views we need to install

Forms

Access displays information in forms. Each form can contain fields that display data from a table or query and can also contain buttons which perform actions. The following list details what each form or class of form is used for. The xxx signifies where several similar forms are grouped together.

FORM	Description

Main 	Installation screen

filter_ctl_panel	filter control panel

filter_ctl_xxx	individual filter control windows

query_ctl_panel	query control panel

query_ctl_xxx	individual query input window

query_ctl_xxx_prtc	query result window for “count” operations

query_ctl_xxx_prtl	query result window for “list” operations

query_ctl_history_prtn	unique window for history “new” operation

vXxx	A form to display each of the mapped views

selected_machines	to display machines left in filter list

mc_details	implementation of browser

Some groups of forms must follow certain conventions:

filter_ctl_xxx forms (except panel) - must have an option group called keep_or_delete, each set up exactly the same way. There must be an “apply filter” button and the attached code follow the same procedure.� The label, operator and value boxes have a strict naming procedure (related to the code). The value boxes have to be tagged depending on whether the data is text or date.

query_ctl_xxx forms (except panel) - these are less rigid than the filters but there will generally be a “count” and “list” button, each with associated code. The code still requires a strict naming convention (as used in the filters�) but the actual code may vary a bit because of the different requirements. The code must always close down any open results windows before trying to process the operation.

The “close” button will also close down any results window. There will also be a “form” and “sheet” button to switch the mode of the results window. These latter three buttons all use certain macros to perform their actions.

query_ctl_xxx_prtl forms - there must always be a dwMachineID field on the form (although usually invisible) and a button to “show details” (which uses the value in dwMachineID) to pop up the browser.

Queries

A query is a stored representation of the lookup operations we do on the MSMS database. These amount to SQL select statements. They can be created with a graphical interface which, while being marginally better than raw SQL, still requires a fair amount of knowledge and skill to manipulate.

The SQL statement in a query can also be set by Basic code. This is what we do for all the built up queries (including filters). For internal operations this is done using only the query named dolook. For the MSMSFE operations themselves it is necessary to create a unique query for each form that displays a result. The following list shows what each query or class of query is for:

QUERY	Description

dolook		for internal lookups

history_add_new	add all visible machines into the history table that are not already in

init_temptab		put all known machines into active list (ie init or undo filter operations)

known_xxx	find all known values for xxx, these are used in forms to inform user of all possible choices for that field

query_ctl_xxx	the queries on which result forms are based - created dynamically

selected_machines	returns all machines in active list along with some identification for selected_machines form

update_last_seen	mark every visible machine as having been seen at 			this date

Macros

Macros are simply a collection of Access actions with a name. They are convenient for attaching actions to buttons. Some macros are collected in groups. The following list details the use of each macro:

MACRO	Description

autoexec	performed when module is first loaded, used to initialise active list and display control panels

close_all_vTables	close any forms that browser may have opened. Attached to close button on browser main panel

close_browser	close browser itself and all its opened forms

close_filter	group of macros for performing any actions needed when closing a filter or the filter control panel and a macro to close them all

close_me	closes active window, attached to any close button that needs no special actions

close_query	group of macros to close each of the query forms and associated results forms and control panel.

open_filter	opens the form for a filter

open_query	opens the form for a query in the appropriate mode

open_vTable	group of macros to close then open each of the vTable forms. This is to ensure data is current

openqrys	opens the filter control panels

query_prt_form	changes query result form into “form” mode

query_prt_sheet	changes query result form into “datasheet” mode

quit_acc	quits Access

reset_select_table	macro to perform operation of selecting all known machines into active list - updates form on screen

show_mc_details	opens browser on machine whose ID is held in field dwMachineID in current form, this field is usually not visible

toggle_filter	group of macros to close filter if it is open or open it if it is currently not open - used from control panel

toggle_query	group of macros to close query if it is open or open it if it is currently not open - used from control panel

Modules

Modules are used to hold code that is not directly activated by form events (such as button clicks). The following list details the usage of each of the modules:

MODULE	Description

attach	code to do the initial attachment of remote views to internal tables

filter	code to deal with filters, including code to build up and execute SQL statements

int_query	code to handle query panels, including code to construct the required SQL statements

utils	general purpose utilities required by rest of code

�Conclusion

The first conclusion is that Access was not the best tool for the job. Part of the problem is that Access was clearly designed as an interactive tool rather than as an application builder. However part of the problem was also due to inadequacies in the implementation and, not insignificantly, also due to the very poor documentation that comes with Access.

It is perhaps not the job of this report to criticise Access but I feel it is useful in that if anyone else attempts to create the next generation of this tool that they not suffer the same problems. Briefly then, as mentioned above I found the documentation very bad for a) organisation - very difficult to find the information you want, b) contents - sometimes the information you need simply isn’t there! c) quality - too much information is repeated, in the wrong place or simply difficult to understand. The entire set of manuals seems to be organised as tutorial with no reference section to explain things.

Also there is more to a visual interface than pop up menus and nicely laid out forms, I felt there were things missing, for instance when trying to construct the query builder I needed some way to display/edit the query as it was built which I was unable to achieve in a usable manner. Also it is sometimes logical for a form to be displayed more than once, this cannot be done. Similarly it was difficult to create generic solutions to certain problems.

So what would be the best tool? An engineer at Microsoft did suggest that Visual Basic would have been better. Though I think a better visual interface could have been created with VB, I suspect it still would not be easily extensible.

Personally, I feel that Basic is an inadequate language for building serious applications with. An application with a more modern language with better high level features, a proper set of GUI objects and a simple interface to ODBC would be better for this sort of work.

Another problem that was very significant was the support from Microsoft UK. In the very first instance if we had been informed that the internal database structure would not be available we would not have wasted so much time trying to work out what we could do with it and how it worked. Also we sent some early problems to Microsoft to which we never got any replies. Again this involved us wasting a lot of time trying to figure out the answers for ourselves to what turned out to be fairly trivial problems. Some of these problems would have been answered if the manuals had some more technical details in it.

However once we did finally get a development engineer assigned to us he was very helpful.

Having been told that we shouldn’t use the raw database to extract information meant we were a bit limited to what we could build. Presumably if Microsoft want third parties to develop applications for MSMS they will have to build a complete API so that future users can access all the information they want.

�Appendix A

This is the RFC that was sent to the newsgroups and some distribution lists.

 Request for Comments on a new remote SMS client

Overview

This message is a request for people to suggest possible useful tools to be

developed for Microsoft's new SMS package.

Introduction

The new package from Microsoft called the Systems Management Server (SMS) offers a wealth of features for managing the hardware and software on networked workstations. These features include the installation of packages, reporting of events and inventorying of the networked systems. The inventory appears as an SQL database to the administrator and to external applications. The SMS server system regularly polls all its clients to request inventory information which is then used to update the SQL database.

The SMS package comes complete with administration tools to handle all the supplied features including querying the inventory database. The inventory tool is a fairly user friendly interface to the SQL database and an administrator can use this to identify workstations of interest, for example they may want to identify clients which are running old versions of a standard package.

Despite the power and generality of the SQL administration tools, we feel that there are cases where full access to these SQL tools may not be suitable, for example, administrative users may have no SQL knowledge but do have a clear requirement to access the information. Thus, the remote user should be able to _interrogate_ the inventory database without the in-depth training required to employ the full power of the SMS administration tools.

To try to achieve this aim, we have started a project to provide such a tool for the network administrators based on Microsoft Access 2.0. Access can connect to a remote SQL database and has a 'visual' component for creating a user friendly interface. The purpose of this project is to create macros/modules/buttons/etc. in Access to create a user interface that can be easily used by an administrator with no SQL skills.

Aim of this Message

The inventory database is large. Access has many features making it a powerful package to extract complex information which can be manipulated in many ways. Thus it is a good choice for collecting data from the inventory system.

However we are trying to create a useful management tool which can be used to quickly gather and report _useful_ information in a simpler way than by speaking directly to the SQL database. This may be done by creating macros to do simpler tasks, writing Access functions for more complex tasks and hopefully wrapping the whole thing around a 'visual' interface using the buttons and menu type facilities of Access.

To make the tool useful from the outset, we are looking for some feedback from potential users of the SMS system on the common types of operations that they would like to be able to do. To aid those not yet familiar with the scope of information in the SMS product, we present a summary of the sort of information that will be available and suggest some of the operations that may be possible.

Database elements

The SMS package defines several components of the database which are deemed to be 'properties' of the Personal Computer. This includes data such as the workstation's name and processor type. The full list below is extracted from the SQL database as given in the production version of the SMS system.

�What follows is a list of the 'groups' and the elements in each group:

Identification

 - Name		- SMSID		- site		- domain

 - SMS location	- system role	- system type	- Netcard ID

Workstation Status

 - last hardware scan		- last software scan

 - files not installed		- system files not modified

 - failed hardware checks	- standalone workstation

Processor

 - name			- type			- quantity

Operating system

 - name		- version	- Install date	- owner

 - organisation	- build number	- build type	- system root

 - system start options		- country code	- language ID

Network

 - Active		- Major version		- Minor version

 - type			- IPX address		- IP address

 - subnet mask		- default gateway	- login name

 - workgroup		- major shell version	- minor shell version

Netcard

 - Manufacturer		- IRQ			- port

Disk

 - Index		- type		- filesystem	- volume

 - storage size	- percent full	- sectors	- cylinders

PC memory

 - total physical	- total paging		- page file name

 - page file size	- base memory		- extended memory

Serial port

 - index		- address	- baud rate	- parity etc.

Parallel port

 - index		- address

Video

 - current mode		- maximum rows		- adaptor type

 - manufacturer		- display type		- 2nd adapter type

 - Bios date

Mouse

 - hardware installed	- hardware type		- manufacturer

 - number of buttons	- language

PC Bios

 - manufacturer		- category		- release date

IRQ Table

 - number	- address	- description	- detected

 - handled by

Packages

 - name		- path		- size		- date

Environment

 List of defined environment strings

Miscellaneous

 Other information that is known about the machines in the inventory

 - site		- domain

What to do with all this data

Hopefully the structure of the inventory above as it relates to hardware should be fairly obvious. With this data it is possible to formulate queries such as:

 Find all machines with a 486 processor

 Find all machines where the percentage disk full is greater than 95%

 Find all machines at site X having less than 2 Mbytes of main memory

As an example, queries such as this can be used to find machines which may require an upgrade before a package can be employed.

Perhaps the most useful aspect though will be in the managment of software. In this area we could have queries such as:

 Find all machines running MSDOS at an earlier version than 5.0

 Find all machines waiting to upgrade to Word 9.1 that have less than 10Mb

 free disk space

We are looking for opinions on what queries would be considered the most useful. Queries that need no extra information (such as finding all machines that are about to run out of disk space) can be attached to simple buttons for immediate execution. Slightly more complex examples can be created where the user can be prompted for data (such as version number). And finally because Access contains a complete Basic interpreter it is possible to create programs using the data obtained from queries. This can handle situations that cannot be done as a simple query such as:

 What would it cost to upgrade all Macs to a new ether card?

Once the data has been obtained, Access has many features for filtering and sorting. It is often possible to sort on some field such as a size to locate the worst offenders more easily.

The presentation of data would probably be in the form of an Access database table for large amounts of data and dialogue windows when the job is to extract specific bits of information. For instance sometimes you will need to all the machines that require action but other times you may simply want to know how many are involved.

Access also has facilities for report generation.

What s/w inventory can actually do

The software inventory is part of the package distribution system. This allows administrators to define sets of files which are to be sent to clients. Part of the definition of the package is a set of 'inventory rules' which are applied to each machine to report whether the package is installed or not. The rules can also be used without any package files to be sent.

The rules can check for such things as file names, sizes, dates, CRCs etc. They can be combined to detect software that needs more than one file to describe it.

For instance there might be a set of definitions such as:

 Name		Rules

 Excelv1.0	filename=excel.exe size=40,435 date=11/12/93 CRC=214211

 Excelv2.1	filename=excel.exe size=38,287 date=23/1/95 CRC=677435

 Emacs		filename=emacs.exe

Then whenever a client is forced to do an inventory check, it searches its entire filespace looking for files that match these rules. When it finds a match it creates an inventory item containing the name of the rule, the path where it was found plus the size and date of the (first) file.

Note that every single package must be defined before it can be checked for. Also note that this is not a method that could be used to check for pirated copies or such like. Also it will suffer greatly with users who want to rename their files (eg to have shorter names).

Predefined and Custom data

We are hoping to create an interface where an administrator can, at the press of a few buttons, get most of the information they need. However we recognise that sometimes there is a requirement to get something different. For such cases we are currently unsure about how much assistance can be given. There will always be the option to drop into raw Access mode but some people won't wish to delve that deeply. It will possible at the very least to copy some of the macros etc. defined for the user interface and edit them. We would hope also to create macros etc. in a modular fashion so that they can be re-used. We are not currently able to assess the possibility of, for instance, creating a tool to allow users to construct their own queries and possibly saving them for later.

Any suggestion in this area we will try and implement only if it is feasible within the scale of the project.

�Timescales

As soon as we have gained enough responses to allow us to see what people want we will start creating the system. We will stop processing responses on March 10th. Once we have analysed the users perceived requirements we will distribute another message to summarise the requests and to indicate what we are going to implement. We hope to have a final product ready by June.

What do we want you to do?

We are primarily looking for feedback on the most common operations that potential users of the SMS system would like from this tool. We must stress that we are looking for _common_ operations, a user sitting in front of Access connected to the inventory database can do just about anything they want, especially with the ability to export the data from Access to a spreadsheet or word processor. Maybe the sort of things we are looking for are typified as being in the areas of troubleshooting and keeping users up to date.

We would like you to send your comments to sms-project@ed.ac.uk. For each operation you would like to suggest, if you could supply.

 1 A concise description.

 2 A longer description if you feel it needs elaborating.

 3 A category that typifies the operation such as Admin, Troubleshooting or

 Maintenance.

 4 A priority from 1 to 5 of how useful you think this particular operation

 would be. With 5 being the highest priority.

Alternatively you can suggest general classes of operation or perhaps suggest areas which you feel need special attention, for instance you may feel that the most important thing is to develop tools to keep track of what software packages people use and how up to date they are or maybe keeping track of which hardware configurations are in use.

�Appendix B

This appendix contains the reponses to the RFC (previous section).

The largest requirement I see is for a query that queries SMS for a specific machine based on some user supplied data such as User name/phone number. The query should then return a summary of all "significant" inventory changes over the last ?? period (say 1 month). By significant I mean exclude changes in disk space if it is less than 90% full etc.

1.A concise description.

Current users

2.A longer description if you feel it needs elaborating.

Presently, there is no way to discover, in aggregate for all

services, who is using each system. I would like to

query a log that was recording each access by each type of

service as soon as it was contacted by a user and that user's

consumption of system resources on some sort of period. The

log could record IP addresses where possible or simply machine

and system name

3.A category that typifies the operation such as Admin, Troubleshooting or Maintenance.

Administration

4.A priority from 1 to 5 of how useful you think this particular operation would be. With 5 being the highest priority.

Definitely a Five(5). All of the other statistics might be

affected by this single measure of user activity. Presently,

there are half hearted attempts at this tracking but it's all

splintered. The resulting logs could be used to track everything from software usage to ethernet load.

--

Operations for the ACCESS interface:

These are the functions we feel are important:

1. Keep track of software used at the company --Administration

 -The products used

 -Versions of those products

 -How many clients are running each

2. Number of workstations with Ethernet cards, Token Ring, etc....

 -Manufacturer and model of each card

3. Find all workstations that have 8 Mg. of memory or less

4. Find all workstations that are not 486 processors

5. Verify that workstations have the current drivers.

--

A:

1. Description. Identify the name of the individual using the

machine.

2. Longer Description. Not Applicable.

3. Category. Admin

4. Priority. 3

B:

1. Description. Identify peripheral equipment connected to the PC.

2. Longer Description. Identify printers, modems, external

disk drives, encryption devices, etc. connected to the PC.

3. Category. Admin

4. Priority 2.

C:

1. Description. Provide a manufacturer's serial number element within hardware/software groups.

2. Longer Description. Not applicable.

3. Category. Admin

4. Priority 5.

� It seemed as though it ought to be possible to make it respond with more information but we were unable to make it do this.

�It would improve the user friendliness of the admin tool to use these!

�Note there is a cheat involved in this procedure. I assume there will never be a clash of names in any of the views involved in each filter. To deal with that situation would make the procedure and code an order of magnitude more complex.

�With the same cheat.

�PAGE �

�PAGE �3�

MSMS Data

Query

Filters

Results

History Data

List of machines

