VisiumIO 1.3.1
The VisiumIO
package provides a set of functions to import 10X Genomics Visium
experiment data into a SpatialExperiment
object. The package makes use of the
SpatialExperiment
data structure, which provides a set of classes and
methods to handle spatially resolved transcriptomics data.
Extension | Class | Imported as |
---|---|---|
.h5 | TENxH5 | SingleCellExperiment w/ TENxMatrix |
.mtx / .mtx.gz | TENxMTX | SummarizedExperiment w/ dgCMatrix |
.tar.gz | TENxFileList | SingleCellExperiment w/ dgCMatrix |
peak_annotation.tsv | TENxPeaks | GRanges |
fragments.tsv.gz | TENxFragments | RaggedExperiment |
.tsv / .tsv.gz | TENxTSV | tibble |
Extension | Class | Imported as |
---|---|---|
spatial.tar.gz | TENxSpatialList | DataFrame list * |
.parquet | TENxSpatialParquet | tibble * |
Note. (*) Intermediate format
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("VisiumIO")
library(VisiumIO)
The TENxVisium
class is used to import a single sample of 10X Visium data.
The TENxVisium
constructor function takes the following arguments:
TENxVisium(
resources = "path/to/10x/visium/file.tar.gz",
spatialResource = "path/to/10x/visium/spatial/file.spatial.tar.gz",
spacerangerOut = "path/to/10x/visium/sample/folder",
sample_id = "sample01",
images = c("lowres", "hires", "detected", "aligned"),
jsonFile = "scalefactors_json.json",
tissuePattern = "tissue_positions.*\\.csv",
spatialCoordsNames = c("pxl_col_in_fullres", "pxl_row_in_fullres")
)
The resource
argument is the path to the 10X Visium file. The
spatialResource
argument is the path to the 10X Visium spatial file. It
usually ends in spatial.tar.gz
.
Note that we use the images = "lowres"
and processing = "raw"
arguments based
on the name of the tissue_*_image.png
file and *_feature_bc_matrix
folder in
the spaceranger
output. The directory structure for a single sample is
shown below:
section1
└── outs
├── spatial
│ ├── tissue_lowres_image.png
│ └── tissue_positions_list.csv
└── raw_feature_bc_matrix
├── barcodes.tsv
├── features.tsv
└── matrix.mtx
Using the example data in SpatialExperiment
, we can load the section1
sample using TENxVisium
.
sample_dir <- system.file(
file.path("extdata", "10xVisium", "section1"),
package = "SpatialExperiment"
)
vis <- TENxVisium(
spacerangerOut = sample_dir, processing = "raw", images = "lowres"
)
vis
## An object of class "TENxVisium"
## Slot "resources":
## TENxFileList of length 3
## names(3): barcodes.tsv features.tsv matrix.mtx
##
## Slot "spatialList":
## TENxSpatialList of length 3
## names(3): scalefactors_json.json tissue_lowres_image.png tissue_positions_list.csv
##
## Slot "coordNames":
## [1] "pxl_col_in_fullres" "pxl_row_in_fullres"
##
## Slot "sampleId":
## [1] "sample01"
The show method of the TENxVisium
class displays the object’s metadata.
The TEnxVisium
object can be imported into a SpatialExperiment
object using
the import
function.
import(vis)
## class: SpatialExperiment
## dim: 50 50
## metadata(2): resources spatialList
## assays(1): counts
## rownames(50): ENSMUSG00000051951 ENSMUSG00000089699 ...
## ENSMUSG00000005886 ENSMUSG00000101476
## rowData names(3): ID Symbol Type
## colnames(50): AAACAACGAATAGTTC-1 AAACAAGTATCTCCCA-1 ...
## AAAGTCGACCCTCAGT-1 AAAGTGCCATCAATTA-1
## colData names(4): in_tissue array_row array_col sample_id
## reducedDimNames(0):
## mainExpName: Gene Expression
## altExpNames(0):
## spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
## imgData names(4): sample_id image_id data scaleFactor
The TENxVisiumList
class is used to import multiple samples of 10X Visium.
The interface is a bit more simple in that you only need to provide the
space ranger
output folder as input to the function.
TENxVisiumList(
sampleFolders = "path/to/10x/visium/sample/folder",
sample_ids = c("sample01", "sample02"),
...
)
The sampleFolders
argument is a character vector of paths to the spaceranger
output folder. Note that each folder must contain an outs
directory. The
sample_ids
argument is a character vector of sample ids.
The directory structure for multiple samples (section1
and section2
) is
shown below:
section1
└── outs
| ├── spatial
| └── raw_feature_bc_matrix
section2
└── outs
├── spatial
└── raw_feature_bc_matrix
The main inputs to TENxVisiumList
are the sampleFolders
and sample_ids
.
These correspond to the spaceranger
output sample folders and a vector
of sample identifiers, respectively.
sample_dirs <- list.dirs(
system.file(
file.path("extdata", "10xVisium"), package = "VisiumIO"
),
recursive = FALSE, full.names = TRUE
)
vlist <- TENxVisiumList(
sampleFolders = sample_dirs,
sample_ids = basename(sample_dirs),
processing = "raw",
images = "lowres"
)
vlist
## An object of class "TENxVisiumList"
## Slot "VisiumList":
## List of length 2
The import
method combines both SingleCellExperiment
objects along with the
spatial information into a single SpatialExperiment
object. The number of
columns in the SpatialExperiment object is equal to the number of cells across
both samples (section1
and section2
).
import(vlist)
## class: SpatialExperiment
## dim: 50 99
## metadata(4): resources spatialList resources spatialList
## assays(1): counts
## rownames(50): ENSMUSG00000051951 ENSMUSG00000089699 ...
## ENSMUSG00000005886 ENSMUSG00000101476
## rowData names(3): ID Symbol Type
## colnames(99): AAACAACGAATAGTTC-1 AAACAAGTATCTCCCA-1 ...
## AAAGTCGACCCTCAGT-1 AAAGTGCCATCAATTA-1
## colData names(4): in_tissue array_row array_col sample_id
## reducedDimNames(0):
## mainExpName: Gene Expression
## altExpNames(0):
## spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
## imgData names(4): sample_id image_id data scaleFactor
The directory structure for a single bin size is shown below.
Visium_HD
└── binned_outputs
└─── square_002um
│ └── filtered_feature_bc_matrix
│ │ └── barcodes.tsv.gz
│ │ └── features.tsv.gz
│ │ └── matrix.mtx.gz
│ └── filtered_feature_bc_matrix.h5
│ └── raw_feature_bc_matrix/
│ └── raw_feature_bc_matrix.h5
│ └── spatial
│ └── [ ... ]
│ └── tissue_positions.parquet
└── square_*
TENxVisiumHD(
spacerangerOut = "./Visium_HD/",
sample_id = "sample01",
processing = c("filtered", "raw"),
images = c("lowres", "hires", "detected", "aligned_fiducials"),
bin_size = c("002", "008", "016"),
jsonFile = .SCALE_JSON_FILE,
tissuePattern = "tissue_positions\\.parquet",
spatialCoordsNames = c("pxl_col_in_fullres", "pxl_row_in_fullres"),
...
)
By default, the MatrixMarket format is read in (format = "mtx"
).
visfold <- system.file(
package = "VisiumIO", "extdata", mustWork = TRUE
)
TENxVisiumHD(
spacerangerOut = visfold, images = "lowres", bin_size = "002"
) |> import()
## class: SpatialExperiment
## dim: 10 10
## metadata(2): resources spatialList
## assays(1): counts
## rownames(10): ENSMUSG00000051951 ENSMUSG00000025900 ...
## ENSMUSG00000033774 ENSMUSG00000025907
## rowData names(3): ID Symbol Type
## colnames(10): s_002um_02448_01644-1 s_002um_00700_02130-1 ...
## s_002um_01016_02194-1 s_002um_00775_02414-1
## colData names(6): barcode in_tissue ... bin_size sample_id
## reducedDimNames(0):
## mainExpName: Gene Expression
## altExpNames(0):
## spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
## imgData names(4): sample_id image_id data scaleFactor
H5 files are supported via the format = "h5"
argument input.
TENxVisiumHD(
spacerangerOut = visfold, images = "lowres", bin_size = "002",
format = "h5"
) |> import()
## class: SpatialExperiment
## dim: 10 10
## metadata(2): resources spatialList
## assays(1): counts
## rownames(10): ENSMUSG00000051951 ENSMUSG00000025900 ...
## ENSMUSG00000033774 ENSMUSG00000025907
## rowData names(3): ID Symbol Type
## colnames(10): s_002um_02448_01644-1 s_002um_00700_02130-1 ...
## s_002um_01016_02194-1 s_002um_00775_02414-1
## colData names(6): barcode in_tissue ... bin_size sample_id
## reducedDimNames(0):
## mainExpName: Gene Expression
## altExpNames(0):
## spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
## imgData names(4): sample_id image_id data scaleFactor
sessionInfo()
## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] VisiumIO_1.3.1 TENxIO_1.9.0
## [3] SingleCellExperiment_1.29.0 SummarizedExperiment_1.37.0
## [5] Biobase_2.67.0 GenomicRanges_1.59.0
## [7] GenomeInfoDb_1.43.0 IRanges_2.41.0
## [9] S4Vectors_0.45.0 BiocGenerics_0.53.0
## [11] MatrixGenerics_1.19.0 matrixStats_1.4.1
## [13] BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] rjson_0.2.23 xfun_0.48 bslib_0.8.0
## [4] rhdf5_2.51.0 lattice_0.22-6 tzdb_0.4.0
## [7] rhdf5filters_1.19.0 vctrs_0.6.5 tools_4.5.0
## [10] parallel_4.5.0 tibble_3.2.1 fansi_1.0.6
## [13] R.oo_1.26.0 pkgconfig_2.0.3 BiocBaseUtils_1.9.0
## [16] Matrix_1.7-1 assertthat_0.2.1 lifecycle_1.0.4
## [19] GenomeInfoDbData_1.2.13 compiler_4.5.0 codetools_0.2-20
## [22] htmltools_0.5.8.1 sass_0.4.9 yaml_2.3.10
## [25] pillar_1.9.0 crayon_1.5.3 jquerylib_0.1.4
## [28] R.utils_2.12.3 DelayedArray_0.33.1 cachem_1.1.0
## [31] magick_2.8.5 abind_1.4-8 tidyselect_1.2.1
## [34] digest_0.6.37 purrr_1.0.2 bookdown_0.41
## [37] arrow_17.0.0.1 fastmap_1.2.0 grid_4.5.0
## [40] archive_1.1.9 cli_3.6.3 SparseArray_1.7.0
## [43] magrittr_2.0.3 S4Arrays_1.7.1 utf8_1.2.4
## [46] readr_2.1.5 UCSC.utils_1.3.0 bit64_4.5.2
## [49] rmarkdown_2.28 XVector_0.47.0 httr_1.4.7
## [52] bit_4.5.0 R.methodsS3_1.8.2 hms_1.1.3
## [55] SpatialExperiment_1.17.0 HDF5Array_1.35.1 evaluate_1.0.1
## [58] knitr_1.48 BiocIO_1.17.0 rlang_1.1.4
## [61] Rcpp_1.0.13 glue_1.8.0 BiocManager_1.30.25
## [64] vroom_1.6.5 jsonlite_1.8.9 Rhdf5lib_1.29.0
## [67] R6_2.5.1 zlibbioc_1.53.0