MGnifyR 1.3.0
MGnifyR
is a package designed to ease access to the EBI’s
MGnify resource, allowing searching and
retrieval of multiple datasets for downstream analysis.
The latest version of MGnifyR seamlessly integrates with the miaverse framework providing access to cutting-edge tools in microbiome down-stream analytics.
MGnifyR
is hosted on Bioconductor, and can be installed using via
BiocManager
.
BiocManager::install("MGnifyR")
MGnifyR
packageOnce installed, MGnifyR
is made available in the usual way.
library(MGnifyR)
#> Loading required package: MultiAssayExperiment
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: 'MatrixGenerics'
#> The following objects are masked from 'package:matrixStats':
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#>
#> Attaching package: 'BiocGenerics'
#> The following objects are masked from 'package:stats':
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from 'package:base':
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#> pmin.int, rank, rbind, rownames, sapply, saveRDS, setdiff, table,
#> tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#>
#> Attaching package: 'S4Vectors'
#> The following object is masked from 'package:utils':
#>
#> findMatches
#> The following objects are masked from 'package:base':
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: 'Biobase'
#> The following object is masked from 'package:MatrixGenerics':
#>
#> rowMedians
#> The following objects are masked from 'package:matrixStats':
#>
#> anyMissing, rowMedians
#> Loading required package: TreeSummarizedExperiment
#> Loading required package: SingleCellExperiment
#> Loading required package: Biostrings
#> Loading required package: XVector
#>
#> Attaching package: 'Biostrings'
#> The following object is masked from 'package:base':
#>
#> strsplit
All functions in MGnifyR
make use of a MgnifyClient
object to keep track
of the JSONAPI url, disk cache location and user access tokens. Thus the first
thing to do when starting any analysis is to instantiate this object. The
following snippet creates this.
mg <- MgnifyClient(useCache = TRUE)
mg
#> An object of class "MgnifyClient"
#> Slot "databaseUrl":
#> [1] "https://www.ebi.ac.uk/metagenomics/api/v1"
#>
#> Slot "authTok":
#> [1] NA
#>
#> Slot "useCache":
#> [1] TRUE
#>
#> Slot "cacheDir":
#> [1] "/tmp/RtmpLNr3NG/.MGnifyR_cache"
#>
#> Slot "showWarnings":
#> [1] FALSE
#>
#> Slot "clearCache":
#> [1] FALSE
#>
#> Slot "verbose":
#> [1] TRUE
The MgnifyClient
object contains slots for each of the previously mentioned
settings.
doQuery()
function can be utilized to search results such as samples and
studies from MGnify database. Below, we fetch information drinking water
samples.
# Fetch studies
samples <- doQuery(
mg,
type = "samples",
biome_name = "root:Environmental:Aquatic:Freshwater:Drinking water",
max.hits = 10)
The result is a table containing accession IDs and description – in this case – on samples.
colnames(samples) |> head()
#> [1] "biosample" "accession" "sample-desc"
#> [4] "environment-biome" "environment-feature" "environment-material"
Now we want to find analysis accessions. Each sample might have multiple analyses. Each analysis ID corresponds to a single run of a particular pipeline on a single sample in a single study.
analyses_accessions <- searchAnalysis(mg, "samples", samples$accession)
By running the searchAnalysis()
function, we get a vector of analysis IDs of
samples that we fed as an input.
analyses_accessions |> head()
#> [1] "MGYA00652201" "MGYA00652185" "MGYA00643487" "MGYA00643486" "MGYA00643485"
#> [6] "MGYA00643484"
We can now check the metadata to get hint of what kind of data we have. We use
getMetadata()
function to fetch data based on analysis IDs.
analyses_metadata <- getMetadata(mg, analyses_accessions)
The returned value is a data.frame
that includes metadata for example on how
analysis was conducted and what kind of samples were analyzed.
colnames(analyses_metadata) |> head()
#> [1] "analysis_analysis-status" "analysis_pipeline-version"
#> [3] "analysis_experiment-type" "analysis_accession"
#> [5] "analysis_is-private" "analysis_complete-time"
After we have selected the data to fetch, we can use getResult()
The output is TreeSummarizedExperiment (TreeSE
) or
MultiAssayExperiment (MAE
) depending on the dataset.
If the dataset includes only taxonomic profiling data, the output is a single
TreeSE
. If dataset includes also functional data, the output is multiple
TreeSE
objects that are linked together by utilizing MAE
.
mae <- getResult(mg, accession = analyses_accessions)
mae
#> A MultiAssayExperiment object of 6 listed
#> experiments with user-defined names and respective classes.
#> Containing an ExperimentList class object of length 6:
#> [1] microbiota: TreeSummarizedExperiment with 3506 rows and 50 columns
#> [2] go-slim: TreeSummarizedExperiment with 116 rows and 38 columns
#> [3] go-terms: TreeSummarizedExperiment with 3133 rows and 38 columns
#> [4] interpro-identifiers: TreeSummarizedExperiment with 18223 rows and 38 columns
#> [5] taxonomy: TreeSummarizedExperiment with 3617 rows and 50 columns
#> [6] taxonomy-lsu: TreeSummarizedExperiment with 3378 rows and 42 columns
#> Functionality:
#> experiments() - obtain the ExperimentList instance
#> colData() - the primary/phenotype DataFrame
#> sampleMap() - the sample coordination DataFrame
#> `$`, `[`, `[[` - extract colData columns, subset, or experiment
#> *Format() - convert into a long or wide DataFrame
#> assays() - convert ExperimentList to a SimpleList of matrices
#> exportClass() - save data to flat files
You can get access to individual TreeSE
object in MAE
by specifying
index or name.
mae[[1]]
#> class: TreeSummarizedExperiment
#> dim: 3506 50
#> metadata(0):
#> assays(1): counts
#> rownames(3506): 82608 62797 ... 5820 6794
#> rowData names(9): Kingdom Phylum ... taxonomy1 taxonomy
#> colnames(50): MGYA00144458 MGYA00144419 ... MGYA00652185 MGYA00652201
#> colData names(64): analysis_analysis.status analysis_pipeline.version
#> ... sample_geo.loc.name sample_instrument.model
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> rowLinks: NULL
#> rowTree: NULL
#> colLinks: NULL
#> colTree: NULL
TreeSE
object is uniquely positioned to support SummarizedExperiment
-based
microbiome data manipulation and visualization. Moreover, it enables access
to miaverse
tools. For example, we can estimate diversity of samples…
library(mia)
#> This is mia version 1.15.0
#> - Online documentation and vignettes: https://microbiome.github.io/mia/
#> - Online book 'Orchestrating Microbiome Analysis (OMA)': https://microbiome.github.io/OMA/docs/devel/
mae[[1]] <- estimateDiversity(mae[[1]], index = "shannon")
#> Warning in estimateDiversity(mae[[1]], index = "shannon"): 'estimateDiversity'
#> is deprecated. Use 'addAlpha' instead.
library(scater)
#> Loading required package: scuttle
#> Loading required package: ggplot2
plotColData(mae[[1]], "shannon", x = "sample_environment..biome.")
… and plot abundances of most abundant phyla.
# Agglomerate data
altExps(mae[[1]]) <- splitByRanks(mae[[1]])
library(miaViz)
#> Loading required package: ggraph
#>
#> Attaching package: 'miaViz'
#> The following object is masked from 'package:mia':
#>
#> plotNMDS
# Plot top taxa
top_taxa <- getTopFeatures(altExp(mae[[1]], "Phylum"), 10)
#> Warning in getTopFeatures(altExp(mae[[1]], "Phylum"), 10): 'getTopFeatures' is
#> deprecated. Use 'getTop' instead.
plotAbundance(altExp(mae[[1]], "Phylum")[top_taxa, ], rank = "Phylum")
#> Warning: The following values are already present in `metadata` and will be
#> overwritten: 'agglomerated_by_rank'. Consider using the 'name' argument to
#> specify alternative names.
We can also perform other analyses such as principal component analysis to microbial profiling data by utilizing miaverse tools.
# Apply relative transformation
mae[[1]] <- transformAssay(mae[[1]], method = "relabundance")
# Perform PCoA
mae[[1]] <- runMDS(
mae[[1]], assay.type = "relabundance",
FUN = vegan::vegdist, method = "bray")
# Plot
plotReducedDim(
mae[[1]], "MDS", colour_by = "sample_environment..biome.")
While getResult()
can be utilized to retrieve microbial profiling data,
getData()
can be used more flexibly to retrieve any kind of data from the
database. It returns data as simple data.frame or list format.
publications <- getData(mg, type = "publications")
colnames(publications) |> head()
#> [1] "document.id" "type"
#> [3] "id" "attributes.pubmed-id"
#> [5] "attributes.pubmed-central-id" "attributes.pub-title"
The result is a data.frame
by default. In this case, it includes information
on publications fetched from the data portal.
Finally, we can use searchFile()
and getFile()
to retrieve other MGnify
pipeline outputs such as merged sequence reads, assembled contigs, and details
of the functional analyses.
With searchFile()
, we can search files from the database.
dl_urls <- searchFile(mg, analyses_accessions, type = "analyses")
The returned table contains search results related to analyses that we fed as an input. The table contains information on file and also URL address from where the file can be loaded.
target_urls <- dl_urls[
dl_urls$attributes.description.label == "Predicted alpha tmRNA", ]
colnames(target_urls) |> head()
#> [1] "type" "id"
#> [3] "attributes.alias" "attributes.file.format.name"
#> [5] "attributes.file.format.extension" "attributes.file.format.compression"
Finally, we can download the files with getFile()
.
# Just select a single file from the target_urls list for demonstration.
file_url <- target_urls$download_url[[1]]
cached_location <- getFile(mg, file_url)
The function returns a path where the file is stored.
# Where are the files?
cached_location
#> [1] "/.MGnifyR_cache/analyses/MGYA00652201/file/ERZ20300939_alpha_tmRNA.RF01849.fasta.gz"
sessionInfo()
#> R Under development (unstable) (2024-10-21 r87258)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] miaViz_1.15.0 ggraph_2.2.1
#> [3] scater_1.35.0 ggplot2_3.5.1
#> [5] scuttle_1.17.0 mia_1.15.0
#> [7] MGnifyR_1.3.0 TreeSummarizedExperiment_2.15.0
#> [9] Biostrings_2.75.0 XVector_0.47.0
#> [11] SingleCellExperiment_1.29.0 MultiAssayExperiment_1.33.0
#> [13] SummarizedExperiment_1.37.0 Biobase_2.67.0
#> [15] GenomicRanges_1.59.0 GenomeInfoDb_1.43.0
#> [17] IRanges_2.41.0 S4Vectors_0.45.0
#> [19] BiocGenerics_0.53.0 MatrixGenerics_1.19.0
#> [21] matrixStats_1.4.1 knitr_1.48
#> [23] BiocStyle_2.35.0
#>
#> loaded via a namespace (and not attached):
#> [1] splines_4.5.0 ggplotify_0.1.2
#> [3] urltools_1.7.3 tibble_3.2.1
#> [5] triebeard_0.4.1 polyclip_1.10-7
#> [7] rpart_4.1.23 DirichletMultinomial_1.49.0
#> [9] lifecycle_1.0.4 lattice_0.22-6
#> [11] MASS_7.3-61 SnowballC_0.7.1
#> [13] backports_1.5.0 magrittr_2.0.3
#> [15] Hmisc_5.2-0 sass_0.4.9
#> [17] rmarkdown_2.28 jquerylib_0.1.4
#> [19] yaml_2.3.10 cowplot_1.1.3
#> [21] DBI_1.2.3 minqa_1.2.8
#> [23] abind_1.4-8 zlibbioc_1.53.0
#> [25] purrr_1.0.2 yulab.utils_0.1.7
#> [27] nnet_7.3-19 tweenr_2.0.3
#> [29] sandwich_3.1-1 GenomeInfoDbData_1.2.13
#> [31] ggrepel_0.9.6 tokenizers_0.3.0
#> [33] irlba_2.3.5.1 tidytree_0.4.6
#> [35] vegan_2.6-8 rbiom_1.0.3
#> [37] tidyjson_0.3.2 permute_0.9-7
#> [39] DelayedMatrixStats_1.29.0 codetools_0.2-20
#> [41] DelayedArray_0.33.0 ggforce_0.4.2
#> [43] tidyselect_1.2.1 aplot_0.2.3
#> [45] UCSC.utils_1.3.0 farver_2.1.2
#> [47] lme4_1.1-35.5 ScaledMatrix_1.15.0
#> [49] viridis_0.6.5 base64enc_0.1-3
#> [51] jsonlite_1.8.9 BiocNeighbors_2.1.0
#> [53] decontam_1.27.0 tidygraph_1.3.1
#> [55] Formula_1.2-5 tools_4.5.0
#> [57] ggnewscale_0.5.0 treeio_1.31.0
#> [59] Rcpp_1.0.13 glue_1.8.0
#> [61] gridExtra_2.3 SparseArray_1.7.0
#> [63] BiocBaseUtils_1.9.0 xfun_0.48
#> [65] mgcv_1.9-1 dplyr_1.1.4
#> [67] withr_3.0.2 BiocManager_1.30.25
#> [69] fastmap_1.2.0 boot_1.3-31
#> [71] bluster_1.17.0 fansi_1.0.6
#> [73] digest_0.6.37 rsvd_1.0.5
#> [75] gridGraphics_0.5-1 R6_2.5.1
#> [77] colorspace_2.1-1 lpSolve_5.6.21
#> [79] utf8_1.2.4 tidyr_1.3.1
#> [81] generics_0.1.3 data.table_1.16.2
#> [83] DECIPHER_3.3.0 graphlayouts_1.2.0
#> [85] httr_1.4.7 htmlwidgets_1.6.4
#> [87] S4Arrays_1.7.0 pkgconfig_2.0.3
#> [89] gtable_0.3.6 janeaustenr_1.0.0
#> [91] htmltools_0.5.8.1 bookdown_0.41
#> [93] scales_1.3.0 ggfun_0.1.7
#> [95] rstudioapi_0.17.1 reshape2_1.4.4
#> [97] checkmate_2.3.2 nlme_3.1-166
#> [99] nloptr_2.1.1 cachem_1.1.0
#> [101] zoo_1.8-12 stringr_1.5.1
#> [103] parallel_4.5.0 vipor_0.4.7
#> [105] foreign_0.8-87 pillar_1.9.0
#> [107] grid_4.5.0 vctrs_0.6.5
#> [109] slam_0.1-54 BiocSingular_1.23.0
#> [111] beachmat_2.23.0 cluster_2.1.6
#> [113] beeswarm_0.4.0 htmlTable_2.4.3
#> [115] evaluate_1.0.1 tinytex_0.53
#> [117] magick_2.8.5 mvtnorm_1.3-1
#> [119] cli_3.6.3 compiler_4.5.0
#> [121] rlang_1.1.4 crayon_1.5.3
#> [123] tidytext_0.4.2 labeling_0.4.3
#> [125] mediation_4.5.0 plyr_1.8.9
#> [127] fs_1.6.4 ggbeeswarm_0.7.2
#> [129] stringi_1.8.4 viridisLite_0.4.2
#> [131] BiocParallel_1.41.0 assertthat_0.2.1
#> [133] munsell_0.5.1 lazyeval_0.2.2
#> [135] Matrix_1.7-1 patchwork_1.3.0
#> [137] sparseMatrixStats_1.19.0 highr_0.11
#> [139] igraph_2.1.1 memoise_2.0.1
#> [141] RcppParallel_5.1.9 bslib_0.8.0
#> [143] ggtree_3.15.0 ape_5.8