A MusMus Dataset of Ob/ob and WT mice on different diets.
In this document, we introduce the purpose of ObMiTi
package, its contents and its potential use cases. This package is a dataset of RNA-seq samples. The samples are of 6 ob/ob mice and 6 wild type mice divided further into High fat diet and normal diet. From each mice 7 tissues has been analyzed. The duration of dieting was 20 weeks.
The package document the data collection, pre-processing and processing. In addition to the documentation the package contains the scripts that were used to generate the data object from the processed data. This data is deposited as RangedSummarizedExperiment
object and can be accessed through ExperimentHub
.
ObMiTi
?It is an R package for documenting and distributing a dataset. The package doesn’t contain any R functions.
ObMiTi
?The package contains two different things:
inst/scripts
RangedSummarizedExperiment
through ExperimentHub
.ObMiTi
for?The RangedSummarizedExperiment
object contains the counts
, colData
, rowRanges
and metadata
which can be used for the purposes of differential gene expression and get set enrichment analysis.
The ObMiTi
package can be installed from Bioconductor using BiocManager
.
ObMiTi
RNA-seq analysis of wild type, and ob/ob mice at 25 weeks of age (n = 3 mice per group) . The sequencing library was constructed using Illumina’s TruSeq RNA Prep kit (Illumina Inc., San Diego, CA, USA), and data generation was performed using the NextSeq 500 platform (Illumina Inc.) following the manufacturer’s protocol.
*.fastq.gz
HISAT2
(2.0.5)*.fastq.gz
and GRCm38
bowtie2 index for the mouse genome*.bam
MouseRNA-seq.txt
The aim of this step is to construct a self-contained object with minimal manipulations of the pre-processed data followed by a simple exploration of the data in the next section.
ob_counts
The required steps to make this object from the pre-processed data are documented in the script and are supposed to be fully reproducible when run through this package. The output is a RangedSummarizedExperiment
object containing the peak counts and the phenotype and features data and metadata.
The RangedSummarizedExperiment
contains * The gene counts matrix counts
* The phenotype data colData
. The column name
links samples with the counts columns. * The feature data rowRanges
* The metadata metadata
which contain a data.frame
of extra details about the sample collected and phenotype.
ob_counts
objectIn this section, we conduct a simple exploration of the data objects to show the content of the package and how they can be loaded and used.
# loading required libraries
library(ExperimentHub)
#> Loading required package: BiocGenerics
#>
#> Attaching package: 'BiocGenerics'
#> The following objects are masked from 'package:stats':
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from 'package:base':
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#> pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
#> tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: AnnotationHub
#> Loading required package: BiocFileCache
#> Loading required package: dbplyr
library(SummarizedExperiment)
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: 'MatrixGenerics'
#> The following objects are masked from 'package:matrixStats':
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: S4Vectors
#>
#> Attaching package: 'S4Vectors'
#> The following objects are masked from 'package:base':
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: 'Biobase'
#> The following object is masked from 'package:MatrixGenerics':
#>
#> rowMedians
#> The following objects are masked from 'package:matrixStats':
#>
#> anyMissing, rowMedians
#> The following object is masked from 'package:ExperimentHub':
#>
#> cache
#> The following object is masked from 'package:AnnotationHub':
#>
#> cache
# query package resources on ExperimentHub
eh <- ExperimentHub()
#> snapshotDate(): 2022-10-24
query(eh, "ObMiTi")
#> ExperimentHub with 1 record
#> # snapshotDate(): 2022-10-24
#> # names(): EH5442
#> # package(): ObMiTi
#> # $dataprovider: Gyeongsang National University
#> # $species: Mus musculus
#> # $rdataclass: SummarizedExperiment
#> # $rdatadateadded: 2021-03-30
#> # $title: Ob/ob and WT mice transcriptome sequencing
#> # $description: Leptin deficient mice is an appealing model for studying of ...
#> # $taxonomyid: 10090
#> # $genome: mm10
#> # $sourcetype: GSEMatrix
#> # $sourceurl: https://github.com/OmarAshkar/ObMiTi
#> # $sourcesize: NA
#> # $tags: c("GEO", "RNASeqData")
#> # retrieve record with 'object[["EH5442"]]'
# load data from ExperimentHub
ob_counts <- query(eh, "ObMiTi")[[1]]
#> see ?ObMiTi and browseVignettes('ObMiTi') for documentation
#> loading from cache
# print object
ob_counts
#> class: RangedSummarizedExperiment
#> dim: 46045 84
#> metadata(1): measures
#> assays(1): counts
#> rownames(46045): ENSMUSG00000102693 ENSMUSG00000064842 ...
#> ENSMUSG00000084520 ENSMUSG00000095742
#> rowData names(4): gene_id entrez_id symbol biotype
#> colnames(84): GSM5100485 GSM5100486 ... GSM5100573 GSM5100574
#> colData names(40): title geo_accession ... genotype.ch1 tissue.ch1
The count matrix can be accessed using assay
. Here we show the first five entries of the first five samples.
# print count matrix
assay(ob_counts)[1:5, 1:5]
#> GSM5100485 GSM5100486 GSM5100487 GSM5100488 GSM5100489
#> ENSMUSG00000102693 0 0 0 0 0
#> ENSMUSG00000064842 0 0 0 0 0
#> ENSMUSG00000051951 15 1 3 575 2
#> ENSMUSG00000102851 0 0 0 0 0
#> ENSMUSG00000103377 0 0 0 1 0
The phenotype/samples data is a data.frame
, It can be accessed using colData
.
# View Structure of counts
str(colData(ob_counts))
#> Formal class 'DFrame' [package "S4Vectors"] with 6 slots
#> ..@ rownames : chr [1:84] "GSM5100485" "GSM5100486" "GSM5100487" "GSM5100488" ...
#> ..@ nrows : int 84
#> ..@ elementType : chr "ANY"
#> ..@ elementMetadata: NULL
#> ..@ metadata : list()
#> ..@ listData :List of 40
#> .. ..$ title : chr [1:84] "ob_ob_HFD_3_He_S12" "ob_ob_HFD_2_He_S11" "WT_HFD_3_Sk_S6" "ob_ob_HFD_1_Sk_S10" ...
#> .. ..$ geo_accession : chr [1:84] "GSM5100485" "GSM5100486" "GSM5100487" "GSM5100488" ...
#> .. ..$ status : chr [1:84] "Public on Feb 23 2021" "Public on Feb 23 2021" "Public on Feb 23 2021" "Public on Feb 23 2021" ...
#> .. ..$ submission_date : chr [1:84] "Feb 22 2021" "Feb 22 2021" "Feb 22 2021" "Feb 22 2021" ...
#> .. ..$ last_update_date : chr [1:84] "Feb 23 2021" "Feb 23 2021" "Feb 23 2021" "Feb 23 2021" ...
#> .. ..$ type : chr [1:84] "SRA" "SRA" "SRA" "SRA" ...
#> .. ..$ channel_count : chr [1:84] "1" "1" "1" "1" ...
#> .. ..$ source_name_ch1 : chr [1:84] "ob_ob_HFD_3_He_S12" "ob_ob_HFD_2_He_S11" "WT_HFD_3_Sk_S6" "ob_ob_HFD_1_Sk_S10" ...
#> .. ..$ organism_ch1 : chr [1:84] "Mus musculus" "Mus musculus" "Mus musculus" "Mus musculus" ...
#> .. ..$ characteristics_ch1 : chr [1:84] "genotype: ob_ob" "genotype: ob_ob" "genotype: WT" "genotype: ob_ob" ...
#> .. ..$ characteristics_ch1.1 : chr [1:84] "diet: HFD" "diet: HFD" "diet: HFD" "diet: HFD" ...
#> .. ..$ characteristics_ch1.2 : chr [1:84] "tissue: He" "tissue: He" "tissue: Sk" "tissue: Sk" ...
#> .. ..$ molecule_ch1 : chr [1:84] "total RNA" "total RNA" "total RNA" "total RNA" ...
#> .. ..$ extract_protocol_ch1 : chr [1:84] "Total mRNA from hearts was isolated using TRIzol and reverse-transcribed using the RevertAid First-Strand cDNA "| __truncated__ "Total mRNA from hearts was isolated using TRIzol and reverse-transcribed using the RevertAid First-Strand cDNA "| __truncated__ "Total mRNA from hearts was isolated using TRIzol and reverse-transcribed using the RevertAid First-Strand cDNA "| __truncated__ "Total mRNA from hearts was isolated using TRIzol and reverse-transcribed using the RevertAid First-Strand cDNA "| __truncated__ ...
#> .. ..$ extract_protocol_ch1.1 : chr [1:84] "RNA libraries were prepared for sequencing using standard Illumina protocols" "RNA libraries were prepared for sequencing using standard Illumina protocols" "RNA libraries were prepared for sequencing using standard Illumina protocols" "RNA libraries were prepared for sequencing using standard Illumina protocols" ...
#> .. ..$ taxid_ch1 : chr [1:84] "10090" "10090" "10090" "10090" ...
#> .. ..$ data_processing : chr [1:84] "RawdataQC checking with Trimmomatic v0.36 with PE ILLUMINACLIP:TruSeq3-PE.fa:2:30:10" "RawdataQC checking with Trimmomatic v0.36 with PE ILLUMINACLIP:TruSeq3-PE.fa:2:30:10" "RawdataQC checking with Trimmomatic v0.36 with PE ILLUMINACLIP:TruSeq3-PE.fa:2:30:10" "RawdataQC checking with Trimmomatic v0.36 with PE ILLUMINACLIP:TruSeq3-PE.fa:2:30:10" ...
#> .. ..$ data_processing.1 : chr [1:84] "Read Alignment by Hisat2-2.0.5 with default parameter" "Read Alignment by Hisat2-2.0.5 with default parameter" "Read Alignment by Hisat2-2.0.5 with default parameter" "Read Alignment by Hisat2-2.0.5 with default parameter" ...
#> .. ..$ data_processing.2 : chr [1:84] "Read count by FeatureCount 1.5.0-p2 with default parameter" "Read count by FeatureCount 1.5.0-p2 with default parameter" "Read count by FeatureCount 1.5.0-p2 with default parameter" "Read count by FeatureCount 1.5.0-p2 with default parameter" ...
#> .. ..$ data_processing.3 : chr [1:84] "Genome_build: GRCm38" "Genome_build: GRCm38" "Genome_build: GRCm38" "Genome_build: GRCm38" ...
#> .. ..$ data_processing.4 : chr [1:84] "Supplementary_files_format_and_content: Ob_Mus_RNA_seq_counts.txt" "Supplementary_files_format_and_content: Ob_Mus_RNA_seq_counts.txt" "Supplementary_files_format_and_content: Ob_Mus_RNA_seq_counts.txt" "Supplementary_files_format_and_content: Ob_Mus_RNA_seq_counts.txt" ...
#> .. ..$ platform_id : chr [1:84] "GPL19057" "GPL19057" "GPL19057" "GPL19057" ...
#> .. ..$ contact_name : chr [1:84] "Gu,Seob,Roh" "Gu,Seob,Roh" "Gu,Seob,Roh" "Gu,Seob,Roh" ...
#> .. ..$ contact_department : chr [1:84] "Department of Anatomy and Convergence Medical Science, College of Medicine" "Department of Anatomy and Convergence Medical Science, College of Medicine" "Department of Anatomy and Convergence Medical Science, College of Medicine" "Department of Anatomy and Convergence Medical Science, College of Medicine" ...
#> .. ..$ contact_institute : chr [1:84] "Gyeongsang National University" "Gyeongsang National University" "Gyeongsang National University" "Gyeongsang National University" ...
#> .. ..$ contact_address : chr [1:84] "Jinju, Gyeongnam, Republic of Korea" "Jinju, Gyeongnam, Republic of Korea" "Jinju, Gyeongnam, Republic of Korea" "Jinju, Gyeongnam, Republic of Korea" ...
#> .. ..$ contact_city : chr [1:84] "Jinju" "Jinju" "Jinju" "Jinju" ...
#> .. ..$ contact_zip.postal_code: chr [1:84] "52727" "52727" "52727" "52727" ...
#> .. ..$ contact_country : chr [1:84] "South Korea" "South Korea" "South Korea" "South Korea" ...
#> .. ..$ data_row_count : chr [1:84] "0" "0" "0" "0" ...
#> .. ..$ instrument_model : chr [1:84] "Illumina NextSeq 500" "Illumina NextSeq 500" "Illumina NextSeq 500" "Illumina NextSeq 500" ...
#> .. ..$ library_selection : chr [1:84] "cDNA" "cDNA" "cDNA" "cDNA" ...
#> .. ..$ library_source : chr [1:84] "transcriptomic" "transcriptomic" "transcriptomic" "transcriptomic" ...
#> .. ..$ library_strategy : chr [1:84] "RNA-Seq" "RNA-Seq" "RNA-Seq" "RNA-Seq" ...
#> .. ..$ relation : chr [1:84] "BioSample: https://www.ncbi.nlm.nih.gov/biosample/SAMN17864609" "BioSample: https://www.ncbi.nlm.nih.gov/biosample/SAMN17864608" "BioSample: https://www.ncbi.nlm.nih.gov/biosample/SAMN17864600" "BioSample: https://www.ncbi.nlm.nih.gov/biosample/SAMN17864584" ...
#> .. ..$ relation.1 : chr [1:84] "SRA: https://www.ncbi.nlm.nih.gov/sra?term=SRX10074369" "SRA: https://www.ncbi.nlm.nih.gov/sra?term=SRX10074368" "SRA: https://www.ncbi.nlm.nih.gov/sra?term=SRX10074359" "SRA: https://www.ncbi.nlm.nih.gov/sra?term=SRX10074341" ...
#> .. ..$ supplementary_file_1 : chr [1:84] "NONE" "NONE" "NONE" "NONE" ...
#> .. ..$ diet.ch1 : chr [1:84] "HFD" "HFD" "HFD" "HFD" ...
#> .. ..$ genotype.ch1 : chr [1:84] "ob_ob" "ob_ob" "WT" "ob_ob" ...
#> .. ..$ tissue.ch1 : chr [1:84] "He" "He" "Sk" "Sk" ...
# Studies' metadata available
names(colData(ob_counts))
#> [1] "title" "geo_accession"
#> [3] "status" "submission_date"
#> [5] "last_update_date" "type"
#> [7] "channel_count" "source_name_ch1"
#> [9] "organism_ch1" "characteristics_ch1"
#> [11] "characteristics_ch1.1" "characteristics_ch1.2"
#> [13] "molecule_ch1" "extract_protocol_ch1"
#> [15] "extract_protocol_ch1.1" "taxid_ch1"
#> [17] "data_processing" "data_processing.1"
#> [19] "data_processing.2" "data_processing.3"
#> [21] "data_processing.4" "platform_id"
#> [23] "contact_name" "contact_department"
#> [25] "contact_institute" "contact_address"
#> [27] "contact_city" "contact_zip.postal_code"
#> [29] "contact_country" "data_row_count"
#> [31] "instrument_model" "library_selection"
#> [33] "library_source" "library_strategy"
#> [35] "relation" "relation.1"
#> [37] "supplementary_file_1" "diet.ch1"
#> [39] "genotype.ch1" "tissue.ch1"
# Sample GSM ID (Same ob_counts$geo_accession)
rownames(colData(ob_counts))
#> [1] "GSM5100485" "GSM5100486" "GSM5100487" "GSM5100488" "GSM5100489"
#> [6] "GSM5100490" "GSM5100491" "GSM5100492" "GSM5100493" "GSM5100494"
#> [11] "GSM5100495" "GSM5100496" "GSM5100497" "GSM5100498" "GSM5100499"
#> [16] "GSM5100500" "GSM5100501" "GSM5100502" "GSM5100503" "GSM5100504"
#> [21] "GSM5100505" "GSM5100506" "GSM5100507" "GSM5100508" "GSM5100509"
#> [26] "GSM5100510" "GSM5100511" "GSM5100512" "GSM5100513" "GSM5100514"
#> [31] "GSM5100515" "GSM5100516" "GSM5100517" "GSM5100518" "GSM5100519"
#> [36] "GSM5100520" "GSM5100521" "GSM5100522" "GSM5100523" "GSM5100524"
#> [41] "GSM5100525" "GSM5100526" "GSM5100527" "GSM5100528" "GSM5100529"
#> [46] "GSM5100531" "GSM5100533" "GSM5100536" "GSM5100539" "GSM5100540"
#> [51] "GSM5100541" "GSM5100542" "GSM5100543" "GSM5100544" "GSM5100545"
#> [56] "GSM5100546" "GSM5100547" "GSM5100548" "GSM5100549" "GSM5100550"
#> [61] "GSM5100551" "GSM5100552" "GSM5100553" "GSM5100554" "GSM5100555"
#> [66] "GSM5100556" "GSM5100557" "GSM5100558" "GSM5100559" "GSM5100560"
#> [71] "GSM5100561" "GSM5100562" "GSM5100563" "GSM5100564" "GSM5100565"
#> [76] "GSM5100566" "GSM5100567" "GSM5100568" "GSM5100569" "GSM5100570"
#> [81] "GSM5100571" "GSM5100572" "GSM5100573" "GSM5100574"
# Sample strain, tissue and diet ID
ob_counts$title
#> [1] "ob_ob_HFD_3_He_S12" "ob_ob_HFD_2_He_S11" "WT_HFD_3_Sk_S6"
#> [4] "ob_ob_HFD_1_Sk_S10" "WT_ND_1_Li_S1" "ob_ob_HFD_3_Hi_S12"
#> [7] "WT_HFD_2_Ep_S17" "ob_ob_HFD_2_Hi_S11" "WT_HDF_2_Hi_S5"
#> [10] "WT_HDF_1_Hi_S4" "ob_ob_ND_3_Hy_S21" "ob_ob_ND_3_Hi_S9"
#> [13] "ob_ob_ND_2_Hi_S8" "ob_ob_ND_1_He_S7" "WT_HFD_3_Ao_S18"
#> [16] "WT_HFD_2_Ao_S17" "WT_HFD_1_Ao_S16" "ob_ob_ND_1_Hi_S7"
#> [19] "ob_ob_ND_1_Ao_S19" "ob_ob_HFD_3_Sk_S12" "ob_ob_HFD_2_Ao_S23"
#> [22] "ob_ob_HFD_3_Hy_S24" "WT_HFD_3_Li_S6" "WT_HFD_1_Ep_S16"
#> [25] "ob_ob_ND_3_Li_S9" "ob_ob_ND_1_Li_S7" "ob_ob_HFD_2_Hy_S23"
#> [28] "ob_ob_HFD_2_Ep_S23" "WT_ND_3_Hi_S3" "WT_ND_2_Hy_S14"
#> [31] "WT_HDF_2_Hy_S17" "WT_HDF_1_Hy_S16" "ob_ob_HFD_1_Hi_S10"
#> [34] "WT_ND_1_He_S1" "WT_ND_3_Sk_S3" "WT_HFD_2_Sk_S5"
#> [37] "ob_ob_ND_3_Ao_S21" "WT_ND_3_Hy_S15" "WT_ND_2_He_S2"
#> [40] "WT_HFD_1_He_S4" "ob_ob_ND_1_Hy_S19" "ob_ob_ND_1_Sk_S7"
#> [43] "WT_ND_2_Li_S2" "WT_ND_2_Ep_S14" "WT_ND_1_Ep_S13"
#> [46] "ob_ob_HFD_3_Ep_S24" "WT_ND_1_Hy_S13" "ob_ob_ND_2_Ep_S20"
#> [49] "ob_ob_HFD_2_Li_S11" "ob_ob_HFD_1_He_S10" "WT_HFD_1_Sk_S4"
#> [52] "WT_HFD_2_Li_S5" "WT_ND_1_Ao_S13" "WT_ND_3_Li_S3"
#> [55] "ob_ob_ND_2_Ao_S20" "ob_ob_ND_3_He_S9" "WT_ND_2_Ao_S14"
#> [58] "ob_ob_ND_1_Ep_S19" "WT_HFD_3_He_S6" "WT_HFD_2_He_S5"
#> [61] "WT_ND_2_Sk_S2" "ob_ob_ND_2_Sk_S8" "WT_HFD_3_Ep_S18"
#> [64] "ob_ob_ND_3_Ep_S21" "ob_ob_HFD_3_Li_S12" "WT_ND_2_Hi_S2"
#> [67] "WT_HDF_3_Hy_S18" "WT_ND_3_He_S3" "WT_ND_3_Ao_S15"
#> [70] "WT_ND_1_Sk_S1" "ob_ob_ND_3_Sk_S9" "ob_ob_HFD_1_Li_S10"
#> [73] "ob_ob_HFD_1_Hy_S22" "ob_ob_HFD_3_Ao_S24" "ob_ob_ND_2_He_S8"
#> [76] "ob_ob_HFD_2_Sk_S11" "ob_ob_HFD_1_Ao_S22" "WT_ND_3_Ep_S15"
#> [79] "WT_HFD_1_Li_S4" "ob_ob_ND_2_Li_S8" "ob_ob_HFD_1_Ep_S22"
#> [82] "WT_ND_1_Hi_S1" "WT_HDF_3_Hi_S6" "ob_ob_ND_2_Hy_S20"
# Frequencies of different diets
table(ob_counts$diet.ch1)
#>
#> HFD ND
#> 42 42
# Frequncies of tissues
table(ob_counts$tissue.ch1)
#>
#> Ao Ep He Hi Hy Li Sk
#> 12 12 12 12 12 12 12
# crosstable of tissue and diet and stratify by genotype
table(ob_counts$diet.ch1, ob_counts$tissue.ch1,ob_counts$genotype.ch1)
#> , , = WT
#>
#>
#> Ao Ep He Hi Hy Li Sk
#> HFD 3 3 3 3 3 3 3
#> ND 3 3 3 3 3 3 3
#>
#> , , = ob_ob
#>
#>
#> Ao Ep He Hi Hy Li Sk
#> HFD 3 3 3 3 3 3 3
#> ND 3 3 3 3 3 3 3
# Summarize Numeric data
summary(data.frame(colData(ob_counts)))
#> title geo_accession status submission_date
#> Length:84 Length:84 Length:84 Length:84
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#> last_update_date type channel_count source_name_ch1
#> Length:84 Length:84 Length:84 Length:84
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#> organism_ch1 characteristics_ch1 characteristics_ch1.1
#> Length:84 Length:84 Length:84
#> Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character
#> characteristics_ch1.2 molecule_ch1 extract_protocol_ch1
#> Length:84 Length:84 Length:84
#> Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character
#> extract_protocol_ch1.1 taxid_ch1 data_processing
#> Length:84 Length:84 Length:84
#> Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character
#> data_processing.1 data_processing.2 data_processing.3 data_processing.4
#> Length:84 Length:84 Length:84 Length:84
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#> platform_id contact_name contact_department contact_institute
#> Length:84 Length:84 Length:84 Length:84
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#> contact_address contact_city contact_zip.postal_code
#> Length:84 Length:84 Length:84
#> Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character
#> contact_country data_row_count instrument_model library_selection
#> Length:84 Length:84 Length:84 Length:84
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#> library_source library_strategy relation relation.1
#> Length:84 Length:84 Length:84 Length:84
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#> supplementary_file_1 diet.ch1 genotype.ch1 tissue.ch1
#> Length:84 Length:84 Length:84 Length:84
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
Other columns in colData
are selected information about the samples/runs or identifiers to different databases. The following table provides the description of each of these columns. Here are a brief description about the key columns.
col_name | description |
---|---|
title | Sample title include strain, diet, tissue and replicate |
genotype.ch1 | the mice type; either ob/ob or WT |
diet.ch1 | The diet type; either high fat (HFD) or Normal diet (ND) |
tissue.ch1 | tissue type. 7 tissues included* |
|———————–|———————————————————-| * Ao: arota, Ep=Epididymis; He=Heart; Hi=Hippocampus; Hy=Hypothalamus; Li=Liver; Sk=Skeletal Muscle.
Additional information about mice characteristics can be accessed from the metadata
. The main dataframe passed is measures. You can access measures as:
metadata(ob_counts)$measures
#> mouse ALT_UL AST_UL T.Chol_mgdL FFA_uEqL Glucose_mgdL
#> 1 ob/ob_HFD_1 302 405 299 558 267
#> 2 ob/ob_HFD_2 534 717 196 563 378
#> 3 ob/ob_HFD_3 428 604 355 513 412
#> 4 ob/ob_ND_1 357 529 263 NA 290
#> 5 ob/ob_ND_2 451 331 264 742 253
#> 6 ob/ob_ND_3 484 509 246 472 384
#> 7 WT_HFD_1 333 345 256 405 284
#> 8 WT_HFD_2 193 247 240 496 412
#> 9 WT_HFD_3 232 217 219 537 364
#> 10 WT_ND_1 29 231 117 490 343
#> 11 WT_ND_2 26 104 110 628 320
#> 12 WT_ND_3 29 126 105 450 306
#> Triglyceride_mgdL Leptin_ngml fat lean free_water total_water blood
#> 1 61 0.0000 44.45 22.92 0.86 21.04 12
#> 2 63 0.0000 46.54 21.73 0.00 20.49 13
#> 3 86 0.0000 51.07 24.55 0.87 23.21 14
#> 4 83 0.0000 39.90 23.22 0.91 21.45 9
#> 5 58 0.0000 39.49 23.25 1.42 22.45 10
#> 6 64 0.0000 45.23 21.29 1.41 21.16 11
#> 7 60 850.2180 20.05 26.21 0.24 22.73 9
#> 8 46 635.7351 18.62 24.72 0.81 20.05 10
#> 9 93 636.9455 17.88 27.04 0.46 23.51 11
#> 10 56 0.0000 9.41 20.39 0.00 17.89 8
#> 11 62 0.0000 6.61 22.82 0.61 19.84 9
#> 12 50 0.0000 6.66 23.05 1.11 20.05 10
#> weight fasting_glucose brain Li mesenteric_fact Ep
#> 1 71.2 110 0.343 3.035 1.454 2.022
#> 2 72.3 118 0.359 3.567 1.577 2.019
#> 3 80.8 117 0.336 3.352 1.901 2.624
#> 4 68.2 160 0.376 4.529 2.105 2.583
#> 5 67.3 181 0.356 3.990 1.723 2.369
#> 6 71.3 173 0.362 4.261 1.760 2.964
#> 7 50.1 239 0.476 3.006 1.203 1.140
#> 8 46.4 259 0.399 2.645 1.371 1.412
#> 9 47.7 188 0.462 2.227 1.428 1.497
#> 10 32.3 168 0.476 1.198 0.368 1.521
#> 11 32.0 197 0.482 1.194 0.336 1.307
#> 12 32.1 180 0.477 1.208 0.431 1.309
#> reteroperitoneal_fact
#> 1 5.475
#> 2 6.865
#> 3 6.431
#> 4 4.983
#> 5 4.858
#> 6 5.652
#> 7 2.057
#> 8 2.112
#> 9 1.827
#> 10 0.725
#> 11 0.625
#> 12 0.635
The information presented in measures
table is described in the table below:
col_name | description |
---|---|
blood | Total blood volume |
weight | mice weight |
fasting_glucose | Fasting blood glucose measurement |
brain | Brain weight |
Li | Liver weight |
Ep | Epididymis weight |
mesentrec_fact | Mesenteric fat weight |
reteroperitoneal_fact | Reteroperitoneal fat weight |
ALT_UL | ALT measurment (U/L) |
AST_UL | AST measurement (U/L) |
T.Chol_mgdL | Total cholesterol measurement (mg/dL) |
FFA_uEql | Free fatty acids measurement |
Glucose_mgdL | Glucose measrurement (mg/dL) |
Triglyceride_mgdL | Triglyceride measurement (mg/dL) |
Leptin_ngmL | Leptin measurement (ng/dL) |
fat | Mice’s fat mass by echo MRI |
lean | Lean body mass by echo MRI |
free_water | Free water measurement by echo MRI |
total water | Total water measurement by echo MRI |
———————– | —————————————- |
The features data are a GRanges
object and can be accessed using rowRanges
.
# print GRanges object
rowRanges(ob_counts)
#> GRanges object with 46045 ranges and 4 metadata columns:
#> seqnames ranges strand | gene_id
#> <Rle> <IRanges> <Rle> | <character>
#> ENSMUSG00000102693 1 3143476-3144545 + | ENSMUSG00000102693
#> ENSMUSG00000064842 1 3172239-3172348 + | ENSMUSG00000064842
#> ENSMUSG00000051951 1 3276124-3741721 - | ENSMUSG00000051951
#> ENSMUSG00000102851 1 3322980-3323459 + | ENSMUSG00000102851
#> ENSMUSG00000103377 1 3435954-3438772 - | ENSMUSG00000103377
#> ... ... ... ... . ...
#> ENSMUSG00000094915 GL456212.1 31967-34932 - | ENSMUSG00000094915
#> ENSMUSG00000079808 GL456212.1 128555-150452 - | ENSMUSG00000079808
#> ENSMUSG00000095041 JH584304.1 52190-59690 - | ENSMUSG00000095041
#> ENSMUSG00000084520 4 156424852-156424986 - | ENSMUSG00000084520
#> ENSMUSG00000095742 JH584295.1 66-1479 - | ENSMUSG00000095742
#> entrez_id symbol biotype
#> <integer> <character> <character>
#> ENSMUSG00000102693 <NA> 4933401J01Rik TEC
#> ENSMUSG00000064842 115487594 Gm26206 snRNA
#> ENSMUSG00000051951 497097 Xkr4 protein_coding
#> ENSMUSG00000102851 <NA> Gm18956 processed_pseudogene
#> ENSMUSG00000103377 <NA> Gm37180 TEC
#> ... ... ... ...
#> ENSMUSG00000094915 671917 protein_coding
#> ENSMUSG00000079808 102638047 protein_coding
#> ENSMUSG00000095041 <NA> protein_coding
#> ENSMUSG00000084520 <NA> snRNA
#> ENSMUSG00000095742 <NA> protein_coding
#> -------
#> seqinfo: 36 sequences from an unspecified genome; no seqlengths
Notice there are two types of data in this object. The first is the coordinates of the identified genes ranges(ob_counts)
. The second is the annotation of the these genes mcols(ob_counts)
. The following table show the description of the second annotation item. All annotations were obtained using biomaRt
package as described in the inst/scripts
.
col_name | description |
---|---|
ranges | The range of start and end of gene |
strand | Either this gene is located on the positive or negative strand |
gene_id | Ensembl gene id |
entrez_id | Entrez gene id (if available) |
symbol | Common gene symbol (if available) |
biotype | The biological function of gene as classified by Ensembl database |
———– | ——————————————————————- |
ObMiTi
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.1 (2022-06-23)
#> os Ubuntu 20.04.5 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_US.UTF-8
#> tz America/New_York
#> date 2022-11-03
#> pandoc 2.5 @ /usr/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> AnnotationDbi 1.60.0 2022-11-02 [2] Bioconductor
#> AnnotationHub * 3.6.0 2022-11-02 [2] Bioconductor
#> assertthat 0.2.1 2019-03-21 [2] CRAN (R 4.2.1)
#> Biobase * 2.58.0 2022-11-02 [2] Bioconductor
#> BiocFileCache * 2.6.0 2022-11-02 [2] Bioconductor
#> BiocGenerics * 0.44.0 2022-11-02 [2] Bioconductor
#> BiocManager 1.30.19 2022-10-25 [2] CRAN (R 4.2.1)
#> BiocVersion 3.16.0 2022-11-02 [2] Bioconductor
#> Biostrings 2.66.0 2022-11-02 [2] Bioconductor
#> bit 4.0.4 2020-08-04 [2] CRAN (R 4.2.1)
#> bit64 4.0.5 2020-08-30 [2] CRAN (R 4.2.1)
#> bitops 1.0-7 2021-04-24 [2] CRAN (R 4.2.1)
#> blob 1.2.3 2022-04-10 [2] CRAN (R 4.2.1)
#> bslib 0.4.0 2022-07-16 [2] CRAN (R 4.2.1)
#> cachem 1.0.6 2021-08-19 [2] CRAN (R 4.2.1)
#> callr 3.7.3 2022-11-02 [2] CRAN (R 4.2.1)
#> cli 3.4.1 2022-09-23 [2] CRAN (R 4.2.1)
#> crayon 1.5.2 2022-09-29 [2] CRAN (R 4.2.1)
#> curl 4.3.3 2022-10-06 [2] CRAN (R 4.2.1)
#> DBI 1.1.3 2022-06-18 [2] CRAN (R 4.2.1)
#> dbplyr * 2.2.1 2022-06-27 [2] CRAN (R 4.2.1)
#> DelayedArray 0.24.0 2022-11-02 [2] Bioconductor
#> devtools 2.4.5 2022-10-11 [2] CRAN (R 4.2.1)
#> digest 0.6.30 2022-10-18 [2] CRAN (R 4.2.1)
#> dplyr 1.0.10 2022-09-01 [2] CRAN (R 4.2.1)
#> ellipsis 0.3.2 2021-04-29 [2] CRAN (R 4.2.1)
#> evaluate 0.17 2022-10-07 [2] CRAN (R 4.2.1)
#> ExperimentHub * 2.6.0 2022-11-02 [2] Bioconductor
#> fansi 1.0.3 2022-03-24 [2] CRAN (R 4.2.1)
#> fastmap 1.1.0 2021-01-25 [2] CRAN (R 4.2.1)
#> filelock 1.0.2 2018-10-05 [2] CRAN (R 4.2.1)
#> fs 1.5.2 2021-12-08 [2] CRAN (R 4.2.1)
#> generics 0.1.3 2022-07-05 [2] CRAN (R 4.2.1)
#> GenomeInfoDb * 1.34.0 2022-11-02 [2] Bioconductor
#> GenomeInfoDbData 1.2.9 2022-09-28 [2] Bioconductor
#> GenomicRanges * 1.50.0 2022-11-02 [2] Bioconductor
#> glue 1.6.2 2022-02-24 [2] CRAN (R 4.2.1)
#> highr 0.9 2021-04-16 [2] CRAN (R 4.2.1)
#> htmltools 0.5.3 2022-07-18 [2] CRAN (R 4.2.1)
#> htmlwidgets 1.5.4 2021-09-08 [2] CRAN (R 4.2.1)
#> httpuv 1.6.6 2022-09-08 [2] CRAN (R 4.2.1)
#> httr 1.4.4 2022-08-17 [2] CRAN (R 4.2.1)
#> interactiveDisplayBase 1.36.0 2022-11-02 [2] Bioconductor
#> IRanges * 2.32.0 2022-11-02 [2] Bioconductor
#> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.2.1)
#> jsonlite 1.8.3 2022-10-21 [2] CRAN (R 4.2.1)
#> KEGGREST 1.38.0 2022-11-02 [2] Bioconductor
#> knitr 1.40 2022-08-24 [2] CRAN (R 4.2.1)
#> later 1.3.0 2021-08-18 [2] CRAN (R 4.2.1)
#> lattice 0.20-45 2021-09-22 [2] CRAN (R 4.2.1)
#> lifecycle 1.0.3 2022-10-07 [2] CRAN (R 4.2.1)
#> magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.2.1)
#> Matrix 1.5-1 2022-09-13 [2] CRAN (R 4.2.1)
#> MatrixGenerics * 1.10.0 2022-11-02 [2] Bioconductor
#> matrixStats * 0.62.0 2022-04-19 [2] CRAN (R 4.2.1)
#> memoise 2.0.1 2021-11-26 [2] CRAN (R 4.2.1)
#> mime 0.12 2021-09-28 [2] CRAN (R 4.2.1)
#> miniUI 0.1.1.1 2018-05-18 [2] CRAN (R 4.2.1)
#> ObMiTi * 1.6.0 2022-11-03 [1] Bioconductor
#> pillar 1.8.1 2022-08-19 [2] CRAN (R 4.2.1)
#> pkgbuild 1.3.1 2021-12-20 [2] CRAN (R 4.2.1)
#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.2.1)
#> pkgload 1.3.1 2022-10-28 [2] CRAN (R 4.2.1)
#> png 0.1-7 2013-12-03 [2] CRAN (R 4.2.1)
#> prettyunits 1.1.1 2020-01-24 [2] CRAN (R 4.2.1)
#> processx 3.8.0 2022-10-26 [2] CRAN (R 4.2.1)
#> profvis 0.3.7 2020-11-02 [2] CRAN (R 4.2.1)
#> promises 1.2.0.1 2021-02-11 [2] CRAN (R 4.2.1)
#> ps 1.7.2 2022-10-26 [2] CRAN (R 4.2.1)
#> purrr 0.3.5 2022-10-06 [2] CRAN (R 4.2.1)
#> R6 2.5.1 2021-08-19 [2] CRAN (R 4.2.1)
#> rappdirs 0.3.3 2021-01-31 [2] CRAN (R 4.2.1)
#> Rcpp 1.0.9 2022-07-08 [2] CRAN (R 4.2.1)
#> RCurl 1.98-1.9 2022-10-03 [2] CRAN (R 4.2.1)
#> remotes 2.4.2 2021-11-30 [2] CRAN (R 4.2.1)
#> rlang 1.0.6 2022-09-24 [2] CRAN (R 4.2.1)
#> rmarkdown 2.17 2022-10-07 [2] CRAN (R 4.2.1)
#> RSQLite 2.2.18 2022-10-04 [2] CRAN (R 4.2.1)
#> S4Vectors * 0.36.0 2022-11-02 [2] Bioconductor
#> sass 0.4.2 2022-07-16 [2] CRAN (R 4.2.1)
#> sessioninfo 1.2.2 2021-12-06 [2] CRAN (R 4.2.1)
#> shiny 1.7.3 2022-10-25 [2] CRAN (R 4.2.1)
#> stringi 1.7.8 2022-07-11 [2] CRAN (R 4.2.1)
#> stringr 1.4.1 2022-08-20 [2] CRAN (R 4.2.1)
#> SummarizedExperiment * 1.28.0 2022-11-02 [2] Bioconductor
#> tibble 3.1.8 2022-07-22 [2] CRAN (R 4.2.1)
#> tidyselect 1.2.0 2022-10-10 [2] CRAN (R 4.2.1)
#> urlchecker 1.0.1 2021-11-30 [2] CRAN (R 4.2.1)
#> usethis 2.1.6 2022-05-25 [2] CRAN (R 4.2.1)
#> utf8 1.2.2 2021-07-24 [2] CRAN (R 4.2.1)
#> vctrs 0.5.0 2022-10-22 [2] CRAN (R 4.2.1)
#> withr 2.5.0 2022-03-03 [2] CRAN (R 4.2.1)
#> xfun 0.34 2022-10-18 [2] CRAN (R 4.2.1)
#> xtable 1.8-4 2019-04-21 [2] CRAN (R 4.2.1)
#> XVector 0.38.0 2022-11-02 [2] Bioconductor
#> yaml 2.3.6 2022-10-18 [2] CRAN (R 4.2.1)
#> zlibbioc 1.44.0 2022-11-02 [2] Bioconductor
#>
#> [1] /tmp/RtmpB321W5/Rinst2ee0f75ae08acb
#> [2] /home/biocbuild/bbs-3.16-bioc/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────