The ReactomeGSA package is a client to the web-based Reactome Analysis System. Essentially, it performs a gene set analysis using the latest version of the Reactome pathway database as a backend.
This vignette shows how the ReactomeGSA package can be used to perform a pathway analysis of cell clusters in single-cell RNA-sequencing data.
To cite this package, use
Griss J. ReactomeGSA, https://github.com/reactome/ReactomeGSA (2019)
The ReactomeGSA
package can be directly installed from Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
if (!require(ReactomeGSA))
BiocManager::install("ReactomeGSA")
#> Loading required package: ReactomeGSA
# install the ReactomeGSA.data package for the example data
if (!require(ReactomeGSA.data))
BiocManager::install("ReactomeGSA.data")
#> Loading required package: ReactomeGSA.data
#> Loading required package: limma
#> Loading required package: edgeR
#> Loading required package: Seurat
#> Attaching SeuratObject
#> Attaching sp
For more information, see https://bioconductor.org/install/.
As an example we load single-cell RNA-sequencing data of B cells extracted from the dataset published by Jerby-Arnon et al. (Cell, 2018).
Note: This is not a complete Seurat object. To decrease the size, the object only contains gene expression values and cluster annotations.
The pathway analysis is at the very end of a scRNA-seq workflow. This means, that any Q/C was already performed, the data was normalized and cells were already clustered.
The ReactomeGSA package can now be used to get pathway-level expression values for every cell cluster. This is achieved by calculating the mean gene expression for every cluster and then submitting this data to a gene set variation analysis.
All of this is wrapped in the single analyse_sc_clusters
function.
library(ReactomeGSA)
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = TRUE)
#> Calculating average cluster expression...
#> Converting expression data to string... (This may take a moment)
#> Conversion complete
#> Submitting request to Reactome API...
#> Compressing request data...
#> Reactome Analysis submitted succesfully
#> Mapping identifiers...
#> Performing gene set analysis using ssGSEA
#> Analysing dataset 'Seurat' using ssGSEA
#> Retrieving result...
The resulting object is a standard ReactomeAnalysisResult
object.
gsva_result
#> ReactomeAnalysisResult object
#> Reactome Release: 82
#> Results:
#> - Seurat:
#> 1748 pathways
#> 11011 fold changes for genes
#> No Reactome visualizations available
#> ReactomeAnalysisResult
pathways
returns the pathway-level expression values per cell cluster:
pathway_expression <- pathways(gsva_result)
# simplify the column names by removing the default dataset identifier
colnames(pathway_expression) <- gsub("\\.Seurat", "", colnames(pathway_expression))
pathway_expression[1:3,]
#> Name Cluster_1 Cluster_10 Cluster_11
#> R-HSA-1059683 Interleukin-6 signaling 0.1083024 0.09933853 0.1419717
#> R-HSA-109606 Intrinsic Pathway for Apoptosis 0.1120826 0.10765166 0.1129437
#> R-HSA-109703 PKB-mediated events 0.1269551 0.05260470 0.1062727
#> Cluster_12 Cluster_13 Cluster_2 Cluster_3 Cluster_4 Cluster_5
#> R-HSA-1059683 0.11064768 0.10186327 0.11589537 0.11294177 0.11265002 0.10465541
#> R-HSA-109606 0.11687392 0.12568517 0.10688977 0.10872405 0.11113868 0.10329639
#> R-HSA-109703 0.09538291 0.07349972 0.08298411 0.08385108 0.05546712 0.04589538
#> Cluster_6 Cluster_7 Cluster_8 Cluster_9
#> R-HSA-1059683 0.09748855 0.12269029 0.13386683 0.10123911
#> R-HSA-109606 0.10807664 0.11563910 0.11937031 0.11260225
#> R-HSA-109703 0.12357026 0.07697748 0.07796547 0.01425426
A simple approach to find the most relevant pathways is to assess the maximum difference in expression for every pathway:
# find the maximum differently expressed pathway
max_difference <- do.call(rbind, apply(pathway_expression, 1, function(row) {
values <- as.numeric(row[2:length(row)])
return(data.frame(name = row[1], min = min(values), max = max(values)))
}))
max_difference$diff <- max_difference$max - max_difference$min
# sort based on the difference
max_difference <- max_difference[order(max_difference$diff, decreasing = T), ]
head(max_difference)
#> name min
#> R-HSA-350864 Regulation of thyroid hormone activity -0.4876458
#> R-HSA-8964540 Alanine metabolism -0.5061431
#> R-HSA-190374 FGFR1c and Klotho ligand binding and activation -0.3434411
#> R-HSA-140180 COX reactions -0.3450976
#> R-HSA-9024909 BDNF activates NTRK2 (TRKB) signaling -0.3746819
#> R-HSA-5263617 Metabolism of ingested MeSeO2H into MeSeH -0.1941002
#> max diff
#> R-HSA-350864 0.3752821 0.8629279
#> R-HSA-8964540 0.2551881 0.7613312
#> R-HSA-190374 0.4157735 0.7592146
#> R-HSA-140180 0.3721532 0.7172508
#> R-HSA-9024909 0.3232355 0.6979174
#> R-HSA-5263617 0.4938569 0.6879571
The ReactomeGSA package contains two functions to visualize these pathway results. The first simply plots the expression for a selected pathway:
For a better overview, the expression of multiple pathways can be shown as a heatmap using gplots
heatmap.2
function:
# Additional parameters are directly passed to gplots heatmap.2 function
plot_gsva_heatmap(gsva_result, max_pathways = 15, margins = c(6,20))
The plot_gsva_heatmap
function can also be used to only display specific pahtways:
# limit to selected B cell related pathways
relevant_pathways <- c("R-HSA-983170", "R-HSA-388841", "R-HSA-2132295", "R-HSA-983705", "R-HSA-5690714")
plot_gsva_heatmap(gsva_result,
pathway_ids = relevant_pathways, # limit to these pathways
margins = c(6,30), # adapt the figure margins in heatmap.2
dendrogram = "col", # only plot column dendrogram
scale = "row", # scale for each pathway
key = FALSE, # don't display the color key
lwid=c(0.1,4)) # remove the white space on the left
This analysis shows us that cluster 8 has a marked up-regulation of B Cell receptor signalling, which is linked to a co-stimulation of the CD28 family. Additionally, there is a gradient among the cluster with respect to genes releated to antigen presentation.
Therefore, we are able to further classify the observed B cell subtypes based on their pathway activity.
The pathway-level expression analysis can also be used to run a Principal Component Analysis on the samples. This is simplified through the function plot_gsva_pca
:
In this analysis, cluster 11 is a clear outlier from the other B cell subtypes and therefore might be prioritised for further evaluation.
sessionInfo()
#> R version 4.2.1 (2022-06-23)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.5 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ReactomeGSA.data_1.11.0 sp_1.5-0 SeuratObject_4.1.2
#> [4] Seurat_4.2.0 edgeR_3.40.0 limma_3.54.0
#> [7] ReactomeGSA_1.12.0
#>
#> loaded via a namespace (and not attached):
#> [1] Rtsne_0.16 colorspace_2.0-3 deldir_1.0-6
#> [4] ellipsis_0.3.2 ggridges_0.5.4 spatstat.data_3.0-0
#> [7] farver_2.1.1 leiden_0.4.3 listenv_0.8.0
#> [10] ggrepel_0.9.1 fansi_1.0.3 codetools_0.2-18
#> [13] splines_4.2.1 cachem_1.0.6 knitr_1.40
#> [16] polyclip_1.10-4 jsonlite_1.8.3 ica_1.0-3
#> [19] cluster_2.1.4 png_0.1-7 rgeos_0.5-9
#> [22] uwot_0.1.14 shiny_1.7.3 sctransform_0.3.5
#> [25] spatstat.sparse_3.0-0 BiocManager_1.30.19 compiler_4.2.1
#> [28] httr_1.4.4 assertthat_0.2.1 Matrix_1.5-1
#> [31] fastmap_1.1.0 lazyeval_0.2.2 cli_3.4.1
#> [34] later_1.3.0 prettyunits_1.1.1 htmltools_0.5.3
#> [37] tools_4.2.1 igraph_1.3.5 gtable_0.3.1
#> [40] glue_1.6.2 RANN_2.6.1 reshape2_1.4.4
#> [43] dplyr_1.0.10 Rcpp_1.0.9 scattermore_0.8
#> [46] jquerylib_0.1.4 vctrs_0.5.0 nlme_3.1-160
#> [49] progressr_0.11.0 lmtest_0.9-40 spatstat.random_3.0-0
#> [52] xfun_0.34 stringr_1.4.1 globals_0.16.1
#> [55] mime_0.12 miniUI_0.1.1.1 lifecycle_1.0.3
#> [58] irlba_2.3.5.1 gtools_3.9.3 goftest_1.2-3
#> [61] future_1.28.0 MASS_7.3-58.1 zoo_1.8-11
#> [64] scales_1.2.1 spatstat.core_2.4-4 hms_1.1.2
#> [67] promises_1.2.0.1 spatstat.utils_3.0-1 parallel_4.2.1
#> [70] RColorBrewer_1.1-3 curl_4.3.3 yaml_2.3.6
#> [73] reticulate_1.26 pbapply_1.5-0 gridExtra_2.3
#> [76] ggplot2_3.3.6 sass_0.4.2 rpart_4.1.19
#> [79] stringi_1.7.8 highr_0.9 caTools_1.18.2
#> [82] rlang_1.0.6 pkgconfig_2.0.3 matrixStats_0.62.0
#> [85] bitops_1.0-7 evaluate_0.17 lattice_0.20-45
#> [88] tensor_1.5 ROCR_1.0-11 purrr_0.3.5
#> [91] labeling_0.4.2 patchwork_1.1.2 htmlwidgets_1.5.4
#> [94] cowplot_1.1.1 tidyselect_1.2.0 parallelly_1.32.1
#> [97] RcppAnnoy_0.0.20 plyr_1.8.7 magrittr_2.0.3
#> [100] R6_2.5.1 gplots_3.1.3 generics_0.1.3
#> [103] DBI_1.1.3 mgcv_1.8-41 pillar_1.8.1
#> [106] fitdistrplus_1.1-8 abind_1.4-5 survival_3.4-0
#> [109] tibble_3.1.8 future.apply_1.9.1 crayon_1.5.2
#> [112] KernSmooth_2.23-20 utf8_1.2.2 spatstat.geom_3.0-3
#> [115] plotly_4.10.0 rmarkdown_2.17 progress_1.2.2
#> [118] locfit_1.5-9.6 grid_4.2.1 data.table_1.14.4
#> [121] digest_0.6.30 xtable_1.8-4 tidyr_1.2.1
#> [124] httpuv_1.6.6 munsell_0.5.0 viridisLite_0.4.1
#> [127] bslib_0.4.0