
Package ‘spatialLIBD’
March 29, 2021

Title LIBD Visium spatial transcriptomics human pilot data inspector

Version 1.2.1

Date 2020-12-17

Description Inspect interactively the spatial transcriptomics 10x Genomics
Visium data from Maynard, Collado-Torres et al, 2020 analyzed by Lieber
Institute for Brain Development researchers and collaborators.

License Artistic-2.0

Encoding UTF-8

LazyData true

Imports shiny, golem, ggplot2, cowplot, plotly, viridisLite,
shinyWidgets, Polychrome, sessioninfo, grid, grDevices,
methods, AnnotationHub, utils, png, scater, DT, ExperimentHub,
RColorBrewer, SummarizedExperiment, stats, graphics, S4Vectors,
IRanges, fields, benchmarkme, SpatialExperiment, BiocFileCache,
jsonlite, tibble, readbitmap

RoxygenNote 7.1.1

Roxygen list(markdown = TRUE)

URL https://github.com/LieberInstitute/spatialLIBD

BugReports https://support.bioconductor.org/t/spatialLIBD

Suggests knitr, RefManageR, rmarkdown, BiocStyle, testthat (>= 2.1.0),
covr, here, BiocManager

VignetteBuilder knitr

biocViews Homo_sapiens_Data, ExperimentHub, SequencingData,
SingleCellData, ExpressionData, Tissue, PackageTypeData

Depends SingleCellExperiment, R (>= 3.6)

git_url https://git.bioconductor.org/packages/spatialLIBD

git_branch RELEASE_3_12

git_last_commit a78c6d3

git_last_commit_date 2020-12-17

Date/Publication 2021-03-29

1

https://github.com/LieberInstitute/spatialLIBD
https://support.bioconductor.org/t/spatialLIBD


2 check_image_path

Author Leonardo Collado-Torres [aut, cre]
(<https://orcid.org/0000-0003-2140-308X>),
Kristen R. Maynard [ctb] (<https://orcid.org/0000-0003-0031-8468>),
Andrew E. Jaffe [ctb] (<https://orcid.org/0000-0001-6886-1454>),
Brenda Pardo [ctb] (<https://orcid.org/0000-0001-8103-7136>)

Maintainer Leonardo Collado-Torres <lcolladotor@gmail.com>

R topics documented:
check_image_path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
check_modeling_results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
check_sce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
check_sce_layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
enough_ram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
fetch_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
gene_set_enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
gene_set_enrichment_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
geom_spatial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
get_colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
layer_boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
layer_matrix_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
layer_stat_cor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
layer_stat_cor_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
libd_layer_colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
read_image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
run_app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
sce_image_clus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
sce_image_clus_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
sce_image_gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
sce_image_gene_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
sce_image_grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
sce_image_grid_gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
sce_to_ve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
sig_genes_extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
sig_genes_extract_all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
sort_clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer . . . . . . . . . . . . . . . . . . . 37
update_scaleFactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
ve_image_colData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Index 40

check_image_path Check input image_path

Description

This function checks that the image_path vector has the appropriate structure. For more details
please check the vignette documentation.



check_modeling_results 3

Usage

check_image_path(image_path, sce)

Arguments

image_path A path to the directory containing the low resolution histology images that is
needed for the interactive visualizations with plotly. See https://github.com/LieberInstitute/spatialLIBD/tree/master/inst/app/www/data
for an example of how these files should be organized.

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

Value

The input object if all checks are passed.

See Also

Other Check input functions: check_modeling_results(), check_sce_layer(), check_sce()

Examples

if (enough_ram()) {
## Obtain the necessary data
if (!exists("sce")) sce <- fetch_data("sce")

## Get the path to the images
img_path <- system.file("app", "www", "data", package = "spatialLIBD")

## Check the object
check_image_path(img_path, sce)

}

check_modeling_results

Check input modeling_results

Description

This function checks that the modeling_results object has the appropriate structure. For more
details please check the vignette documentation.

Usage

check_modeling_results(modeling_results)



4 check_sce

Arguments

modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is
a list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results, the
p-values, and the FDR adjusted p-values. Then the ensembl column is used for
matching in some cases. See fetch_data() for more details.

Value

The input object if all checks are passed.

See Also

Other Check input functions: check_image_path(), check_sce_layer(), check_sce()

Examples

if (!exists("modeling_results")) {
modeling_results <- fetch_data(type = "modeling_results")

}

## Check the object
xx <- check_modeling_results(modeling_results)

check_sce Check input sce

Description

This function checks that the sce object has the appropriate structure. For more details please check
the vignette documentation.

Usage

check_sce(
sce,
variables = c("GraphBased", "Layer", "Maynard", "Martinowich", paste0("SNN_k50_k",

4:28), "layer_guess_reordered_short", "cell_count", "sum_umi", "sum_gene",
"expr_chrM", "expr_chrM_ratio", "SpatialDE_PCA", "SpatialDE_pool_PCA", "HVG_PCA",
"pseudobulk_PCA", "markers_PCA", "SpatialDE_UMAP", "SpatialDE_pool_UMAP", "HVG_UMAP",
"pseudobulk_UMAP", "markers_UMAP", "SpatialDE_PCA_spatial",
"SpatialDE_pool_PCA_spatial", "HVG_PCA_spatial", "pseudobulk_PCA_spatial",

"markers_PCA_spatial", "SpatialDE_UMAP_spatial", "SpatialDE_pool_UMAP_spatial",
"HVG_UMAP_spatial", "pseudobulk_UMAP_spatial", "markers_UMAP_spatial")

)



check_sce_layer 5

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

variables A character() vector of variable names expected to be present in colData(sce).

Value

The input object if all checks are passed.

See Also

Other Check input functions: check_image_path(), check_modeling_results(), check_sce_layer()

Examples

if (enough_ram()) {
## Obtain the necessary data
if (!exists("sce")) sce <- fetch_data("sce")

## Check the object
check_sce(sce)

}

check_sce_layer Check input sce_layer

Description

This function checks that the sce_layer object has the appropriate structure. For more details
please check the vignette documentation.

Usage

check_sce_layer(sce_layer, variables = "layer_guess_reordered_short")

Arguments

sce_layer Defaults to the output of fetch_data(type = 'sce_layer'). This is a Single-
CellExperiment object with the spot-level Visium data compressed via pseudo-
bulking to the layer-level (group-level) resolution. See fetch_data() for more
details.

variables A character() vector of variable names expected to be present in colData(sce_layer).

Value

The input object if all checks are passed.

See Also

Other Check input functions: check_image_path(), check_modeling_results(), check_sce()



6 enough_ram

Examples

## Obtain the necessary data
if (!exists("sce_layer")) sce_layer <- fetch_data("sce_layer")

## Check the object
check_sce_layer(sce_layer)

enough_ram Determine if you have enough RAM memory

Description

This function determines if you have enough RAM memory on your system.

Usage

enough_ram(how_much = 3e+09)

Arguments

how_much The number of bytes you want to compare against.

Details

If benchmarkme::get_ram() fails, this function will return FALSE as a save bet.

Value

A logical(1) indicating whether your system has enough RAM memory.

Examples

## Do you have ~ 3 GB in your system?
enough_ram(3e9)

## Do you have ~ 100 GB in your system
enough_ram(100e9)



fetch_data 7

fetch_data Download the Human DLPFC Visium data from LIBD

Description

This function downloads from ExperimentHub the dorsolateral prefrontal cortex (DLPFC) human
Visium data and results analyzed by LIBD. If ExperimentHub is not available, it will download
the files from Dropbox using utils::download.file() unless the files are present already at
destdir. Note that ExperimentHub will cache the data and automatically detect if you have previ-
ously downloaded it, thus making it the preferred way to interact with the data.

Usage

fetch_data(
type = c("sce", "sce_layer", "modeling_results", "sce_example", "ve"),
destdir = tempdir(),
eh = ExperimentHub::ExperimentHub(),
bfc = BiocFileCache::BiocFileCache()

)

Arguments

type A character(1) specifying which file you want to download. It can either
be: sce for the SingleCellExperiment object containing the spot-level data that
includes the information for visualizing the clusters/genes on top of the Visium
histology, sce_layer for the SingleCellExperiment object containing the layer-
level data (pseudo-bulked from the spot-level), or modeling_results for the
list of tables with the enrichment, pairwise, and anova model results from
the layer-level data. It can also be sce_example which is a reduced version
of sce just for example purposes. As of BioC version 3.12 ve donwloads a
VisiumExperiment-class object.

destdir The destination directory to where files will be downloaded to in case the ExperimentHub
resource is not available. If you already downloaded the files, you can set this
to the current path where the files were previously downloaded to avoid re-
downloading them.

eh An ExperimentHub object ExperimentHub-class.

bfc A BiocFileCache object BiocFileCache-class. Used when eh is not available.

Details

The data was initially prepared by scripts at https://github.com/LieberInstitute/HumanPilot and fur-
ther refined by https://github.com/LieberInstitute/spatialLIBD/blob/master/inst/scripts/make-data_spatialLIBD.R.

Value

The requested object: sce, sce_layer, ve or modeling_results that you have to assign to an
object. If you didn’t you can still avoid re-loading the object by using .Last.value.



8 gene_set_enrichment

Examples

## Download the SingleCellExperiment object
## at the layer-level
if (!exists("sce_layer")) sce_layer <- fetch_data("sce_layer")

## Explore the data
sce_layer

gene_set_enrichment Evaluate the enrichment for a list of gene sets

Description

Using the layer-level (group-level) data, this function evaluates whether list of gene sets (Ensembl
gene IDs) are enrichment among the significant genes (FDR < 0.1 by default) genes for a given
model type result.

Usage

gene_set_enrichment(
gene_list,
fdr_cut = 0.1,
modeling_results = fetch_data(type = "modeling_results"),
model_type = names(modeling_results)[1],
reverse = FALSE

)

Arguments

gene_list A named list object (could be a data.frame) where each element of the list is
a character vector of Ensembl gene IDs.

fdr_cut A numeric(1) specifying the FDR cutoff to use for determining significance
among the

modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is
a list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results, the
p-values, and the FDR adjusted p-values. Then the ensembl column is used for
matching in some cases. See fetch_data() for more details.

model_type A named element of the modeling_results list. By default that is either enrichment
for the model that tests one human brain layer against the rest (one group vs the
rest), pairwise which compares two layers (groups) denoted by layerA-layerB
such that layerA is greater than layerB, and anova which determines if any
layer (group) is different from the rest adjusting for the mean expression level.
The statistics for enrichment and pairwise are t-statistics while the anova
model ones are F-statistics.

reverse A logical(1) indicating whether to multiply by -1 the input statistics and re-
verse the layerA-layerB column names (using the -) into layerB-layerA.



gene_set_enrichment 9

Details

Check https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/check_clinical_gene_sets.R
to see a full script from where this family of functions is derived from.

Value

A table in long format with the enrichment results using stats::fisher.test().

Author(s)

Andrew E Jaffe, Leonardo Collado-Torres

See Also

Other Gene set enrichment functions: gene_set_enrichment_plot()

Examples

## Read in the SFARI gene sets included in the package
asd_sfari <- utils::read.csv(

system.file(
"extdata",
"SFARI-Gene_genes_01-03-2020release_02-04-2020export.csv",
package = "spatialLIBD"

),
as.is = TRUE

)

## Format them appropriately
asd_sfari_geneList <- list(

Gene_SFARI_all = asd_sfari$ensembl.id,
Gene_SFARI_high = asd_sfari$ensembl.id[asd_sfari$gene.score < 3],
Gene_SFARI_syndromic = asd_sfari$ensembl.id[asd_sfari$syndromic == 1]

)

## Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

## Compute the gene set enrichment results
asd_sfari_enrichment <- gene_set_enrichment(

gene_list = asd_sfari_geneList,
modeling_results = modeling_results,
model_type = "enrichment"

)

## Explore the results
asd_sfari_enrichment



10 gene_set_enrichment_plot

gene_set_enrichment_plot

Plot the gene set enrichment results

Description

This function takes the output of gene_set_enrichment() and creates a heatmap visualization of
the results.

Usage

gene_set_enrichment_plot(
enrichment,
xlabs = unique(enrichment$ID),
PThresh = 12,
ORcut = 3,
enrichOnly = FALSE,
layerHeights = c(0, seq_len(length(unique(enrichment$test)))) * 15,
mypal = c("white", (grDevices::colorRampPalette(RColorBrewer::brewer.pal(9,
"YlOrRd")))(50)),

cex = 1.2
)

Arguments

enrichment The output of gene_set_enrichment().

xlabs A vector of names in the same order and length as unique(enrichment$ID).
Gets passed to layer_matrix_plot().

PThresh A numeric(1) specifying the P-value threshold for the maximum value in the
-log10(p) scale.

ORcut A numeric(1) specifying the P-value threshold for the minimum value in the
-log10(p) scale for printing the odds ratio values in the cells of the resulting
plot.

enrichOnly A logical(1) indicating whether to show only odds ratio values greater than 1.

layerHeights A numeric() vector of length equal to length(unique(enrichment$test)) +
1 that starts at 0 specifying where to plot the y-axis breaks which can be used for
re-creating the length of each brain layer. Gets passed to layer_matrix_plot().

mypal A vector with the color palette to use. Gets passed to layer_matrix_plot().

cex Passed to layer_matrix_plot().

Details

Check https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/check_clinical_gene_sets.R
to see a full script from where this family of functions is derived from.

Value

A plot visualizing the gene set enrichment odds ratio and p-value results.



gene_set_enrichment_plot 11

Author(s)

Andrew E Jaffe, Leonardo Collado-Torres

See Also

layer_matrix_plot

Other Gene set enrichment functions: gene_set_enrichment()

Examples

## Read in the SFARI gene sets included in the package
asd_sfari <- utils::read.csv(

system.file(
"extdata",
"SFARI-Gene_genes_01-03-2020release_02-04-2020export.csv",
package = "spatialLIBD"

),
as.is = TRUE

)

## Format them appropriately
asd_sfari_geneList <- list(

Gene_SFARI_all = asd_sfari$ensembl.id,
Gene_SFARI_high = asd_sfari$ensembl.id[asd_sfari$gene.score < 3],
Gene_SFARI_syndromic = asd_sfari$ensembl.id[asd_sfari$syndromic == 1]

)

## Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

## Compute the gene set enrichment results
asd_sfari_enrichment <- gene_set_enrichment(

gene_list = asd_sfari_geneList,
modeling_results = modeling_results,
model_type = "enrichment"

)

## Visualize the gene set enrichment results
## with a custom color palette
gene_set_enrichment_plot(

asd_sfari_enrichment,
xlabs = gsub(".*_", "", unique(asd_sfari_enrichment$ID)),
mypal = c(

"white",
grDevices::colorRampPalette(

RColorBrewer::brewer.pal(9, "BuGn")
)(50)

)
)

## Specify the layer heights so it resembles more the length of each
## layer in the brain
gene_set_enrichment_plot(



12 geom_spatial

asd_sfari_enrichment,
xlabs = gsub(".*_", "", unique(asd_sfari_enrichment$ID)),
layerHeights = c(0, 40, 55, 75, 85, 110, 120, 135),

)

geom_spatial A ggplot2 layer for visualizing the Visium histology

Description

This function defines a ggplot2::layer() for visualizing the histology image from Visium. It can
be combined with other ggplot2 functions for visualizing the clusters as in sce_image_clus_p()
or gene-level information as in sce_image_gene_p().

Usage

geom_spatial(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = FALSE,
...

)

Arguments

mapping Passed to ggplot2::layer(mapping) where grob, x and y are required.

data Passed to ggplot2::layer(data).

stat Passed to ggplot2::layer(stat).

position Passed to ggplot2::layer(position).

na.rm Passed to ggplot2::layer(params = list(na.rm)).

show.legend Passed to ggplot2::layer(show.legend).

inherit.aes Passed to ggplot2::layer(inherit.aes).

... Other arguments passed to ggplot2::layer(params = list(...)).

Value

A ggplot2::layer() for the histology information.

Author(s)

10x Genomics



get_colors 13

Examples

if (enough_ram()) {
## Obtain the necessary data
if (!exists("ve")) ve <- fetch_data("ve")

## Select the first sample and extract the data
sample_id <- unique(SpatialExperiment::spatialCoords(ve)$sample_name)[1]
ve_sub <- ve[, SpatialExperiment::spatialCoords(ve)$sample_name == sample_id]
sample_df <- as.data.frame(SpatialExperiment::spatialCoords(ve_sub))

## Make a plot using geom_spatial
p <- ggplot2::ggplot(

sample_df,
ggplot2::aes(

x = imagecol,
y = imagerow,

)
) +

geom_spatial(
data = read_image(ve_sub, sample_id),
ggplot2::aes(grob = grob),
x = 0.5,
y = 0.5

)

## Show the plot
print(p)

## Clean up
rm(ve_sub)

}

get_colors Obtain the colors for a set of cluster names

Description

This function returns a vector of colors based on a vector of cluster names. It can be used to
automatically assign colors.

Usage

get_colors(colors = NULL, clusters)

Arguments

colors A vector of colors. If NULL then a set of default colors will be used when
clusters has less than 12 unique values, otherwise palette36.colors will be used
which can generate up to 36 unique colors. If the number of unique clusters is
beyond 36 then this function will fail.

clusters A vector of cluster names.



14 layer_boxplot

Value

A named vector where the values are the colors to use for displaying them different clusters. For
some use cases, you might have to either change the names or use unname().

Examples

## Obtain the necessary data
if (!exists("sce_layer")) sce_layer <- fetch_data("sce_layer")

## Example layer colors with the corresponding names
get_colors(libd_layer_colors, sce_layer$layer_guess)
get_colors(libd_layer_colors, sce_layer$layer_guess_reordered_short)

## Example where colors are assigned automatically
## based on a pre-defined set of colors
get_colors(clusters = sce_layer$kmeans_k7)

## Example where Polychrome::palette36.colors() gets used
get_colors(clusters = letters[seq_len(13)])

layer_boxplot Layer-level (group-level) boxplots

Description

This function uses the output of sig_genes_extract_all() as well as the logcounts from the
layer-level (group-level) data to visualize the expression of a given gene and display the modeling
results for the given gene.

Usage

layer_boxplot(
i = 1,
sig_genes = sig_genes_extract(),
short_title = TRUE,
sce_layer = fetch_data(type = "sce_layer"),
col_bkg_box = "grey80",
col_bkg_point = "grey40",
col_low_box = "violet",
col_low_point = "darkviolet",
col_high_box = "skyblue",
col_high_point = "dodgerblue4",
cex = 2

)

Arguments

i A integer(1) indicating which row of sig_genes do you want to plot.

sig_genes The output of sig_genes_extract_all().

short_title A logical(1) indicating whether to print a short title or not.



layer_boxplot 15

sce_layer Defaults to the output of fetch_data(type = 'sce_layer'). This is a Single-
CellExperiment object with the spot-level Visium data compressed via pseudo-
bulking to the layer-level (group-level) resolution. See fetch_data() for more
details.

col_bkg_box Box background color for layers not used when visualizing the pairwise model
results.

col_bkg_point Similar to col_bkg_box but for the points.

col_low_box Box background color for layer(s) with the expected lower expression based on
the actual test for row i of sig_genes.

col_low_point Similar to col_low_box but for the points.

col_high_box Similar to col_low_box but for the expected layer(s) with higher expression.

col_high_point Similar to col_high_box but for the points.

cex Controls the size of the text, points and axis legends.

Value

This function creates a boxplot of the layer-level data (group-level) separated by layer and colored
based on the model type from row i of sig_genes.

References

Adapted from https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/layer_specificity.R

See Also

Other Layer modeling functions: sig_genes_extract_all(), sig_genes_extract()

Examples

## Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

if (!exists("sce_layer")) sce_layer <- fetch_data(type = "sce_layer")

## Top 2 genes from the enrichment model
sig_genes <- sig_genes_extract_all(

n = 2,
modeling_results = modeling_results,
sce_layer = sce_layer

)

## Example default boxplot
set.seed(20200206)
layer_boxplot(sig_genes = sig_genes, sce_layer = sce_layer)

## Now show the long title version
set.seed(20200206)
layer_boxplot(

sig_genes = sig_genes,
short_title = FALSE,
sce_layer = sce_layer



16 layer_matrix_plot

)

set.seed(20200206)
layer_boxplot(

i = which(sig_genes$model_type == "anova")[1],
sig_genes = sig_genes,
sce_layer = sce_layer

)

set.seed(20200206)
layer_boxplot(

i = which(sig_genes$model_type == "pairwise")[1],
sig_genes = sig_genes,
sce_layer = sce_layer

)

## Viridis colors displayed in the shiny app
library("viridisLite")
set.seed(20200206)
layer_boxplot(

sig_genes = sig_genes,
sce_layer = sce_layer,
col_low_box = viridis(4)[2],
col_low_point = viridis(4)[1],
col_high_box = viridis(4)[3],
col_high_point = viridis(4)[4]

)

## Paper colors displayed in the shiny app
set.seed(20200206)
layer_boxplot(

sig_genes = sig_genes,
sce_layer = sce_layer,
col_low_box = "palegreen3",
col_low_point = "springgreen2",
col_high_box = "darkorange2",
col_high_point = "orange1"

)

## Blue/red colors displayed in the shiny app
set.seed(20200206)
layer_boxplot(

i = which(sig_genes$model_type == "pairwise")[1],
sig_genes = sig_genes,
sce_layer = sce_layer,
col_bkg_box = "grey90",
col_bkg_point = "grey60",
col_low_box = "skyblue2",
col_low_point = "royalblue3",
col_high_box = "tomato2",
col_high_point = "firebrick4",
cex = 3

)

layer_matrix_plot Visualize a matrix of values across human brain layers



layer_matrix_plot 17

Description

This function visualizes a numerical matrix where the Y-axis represents the human brain layers and
can be adjusted to represent the length of each brain layer. Cells can optionally have text values.
This function is used by gene_set_enrichment_plot() and layer_stat_cor_plot().

Usage

layer_matrix_plot(
matrix_values,
matrix_labels = NULL,
xlabs = NULL,
layerHeights = NULL,
mypal = c("white", (grDevices::colorRampPalette(RColorBrewer::brewer.pal(9,
"YlOrRd")))(50)),

breaks = NULL,
axis.args = NULL,
srt = 45,
mar = c(8, 4, 4, 2) + 0.1,
cex = 1.2

)

Arguments

matrix_values A matrix() with one column per set of interest and one row per layer (group)
with numeric values.

matrix_labels Optionally a character matrix() with the same dimensions and dimnames() as
matrix_values with text labels for the cells.

xlabs A vector of names in the same order and length as colnames(matrix_values).

layerHeights A numeric() vector of length equal to nrow(matrix_values) + 1 that starts at
0 specifying where to plot the y-axis breaks which can be used for re-creating
the length of each brain layer.

mypal A vector with the color palette to use.

breaks Passed to fields::image.plot(). Used by layer_stat_cor_plot().

axis.args Passed to fields::image.plot(). Used by layer_stat_cor_plot().

srt The angle for the x-axis labels. Used by layer_stat_cor_plot().

mar Passed to graphics::par().

cex Used for the x-axis labels and the text inside the cells.

Value

A base R plot visualizing the input matrix_values with optional text labels for matrix_labels.

Author(s)

Andrew E Jaffe, Leonardo Collado-Torres



18 layer_stat_cor

Examples

## Create some random data
set.seed(20200224)
mat <- matrix(runif(7 * 8, min = -1), nrow = 7)
rownames(mat) <- c("WM", paste0("L", rev(seq_len(6))))
colnames(mat) <- paste0("Var", seq_len(8))

## Create some text labels
mat_text <- matrix("", nrow = 7, ncol = 8, dimnames = dimnames(mat))
diag(mat_text) <- as.character(round(diag(mat), 2))

## Make the plot
layer_matrix_plot(mat, mat_text)

## Try to re-create the anatomical proportions of the human brain layers
layer_matrix_plot(

mat,
mat_text,
layerHeights = c(0, 40, 55, 75, 85, 110, 120, 135),
cex = 2

)

layer_stat_cor Layer modeling correlation of statistics

Description

Layer modeling correlation of statistics

Usage

layer_stat_cor(
stats,
modeling_results = fetch_data(type = "modeling_results"),
model_type = names(modeling_results)[1],
reverse = FALSE

)

Arguments

stats A data.frame where the row names are Ensembl gene IDs, the column names
are labels for clusters of cells or cell types, and where each cell contains the
given statistic for that gene and cell type. These statistics should be computed
similarly to the modeling results from the data we provide. For example, like
the enrichment t-statistics that are derived from comparing one layer against
the rest. The stats will be matched and then correlated with our statistics.

modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is
a list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results, the
p-values, and the FDR adjusted p-values. Then the ensembl column is used for
matching in some cases. See fetch_data() for more details.



layer_stat_cor_plot 19

model_type A named element of the modeling_results list. By default that is either enrichment
for the model that tests one human brain layer against the rest (one group vs the
rest), pairwise which compares two layers (groups) denoted by layerA-layerB
such that layerA is greater than layerB, and anova which determines if any
layer (group) is different from the rest adjusting for the mean expression level.
The statistics for enrichment and pairwise are t-statistics while the anova
model ones are F-statistics.

reverse A logical(1) indicating whether to multiply by -1 the input statistics and re-
verse the layerA-layerB column names (using the -) into layerB-layerA.

Details

Check https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/dlpfc_snRNAseq_annotation.R
for a full analysis from which this family of functions is derived from.

Value

A correlation matrix between stats and our statistics using only the Ensembl gene IDs present in
both tables. The columns are sorted using a hierarchical cluster.

Author(s)

Andrew E Jaffe, Leonardo Collado-Torres

See Also

Other Layer correlation functions: layer_stat_cor_plot()

Examples

## Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

## Compute the correlations
cor_stats_layer <- layer_stat_cor(

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer,
modeling_results,
"enrichment"

)

## Explore the correlation matrix
head(cor_stats_layer[, seq_len(3)])

layer_stat_cor_plot Visualize the layer modeling correlation of statistics

Description

This function makes a heatmap from the layer_stat_cor() correlation matrix between a given set
of cell cluster/type statistics derived from scRNA-seq or snRNA-seq data (among other types) and
the layer statistics from the Human DLPFC Visium data (when using the default arguments).



20 layer_stat_cor_plot

Usage

layer_stat_cor_plot(
cor_stats_layer,
max = 0.81,
min = -max,
layerHeights = NULL,
cex = 1.2

)

Arguments

cor_stats_layer

The output of layer_stat_cor().

max A numeric(1) specifying the highest correlation value for the color scale (should
be between 0 and 1).

min A numeric(1) specifying the lowest correlation value for the color scale (should
be between 0 and -1).

layerHeights A numeric() vector of length equal to ncol(cor_stats_layer) + 1 that starts
at 0 specifying where to plot the y-axis breaks which can be used for re-creating
the length of each brain layer. Gets passed to layer_matrix_plot().

cex Passed to layer_matrix_plot().

Details

Check https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/dlpfc_snRNAseq_annotation.R
for a full analysis from which this family of functions is derived from.

Value

A heatmap for the correlation matrix between statistics.

Author(s)

Andrew E Jaffe, Leonardo Collado-Torres

See Also

layer_matrix_plot

Other Layer correlation functions: layer_stat_cor()

Examples

## Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

## Compute the correlations
cor_stats_layer <- layer_stat_cor(

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer,
modeling_results,
"enrichment"



libd_layer_colors 21

)

## Visualize the correlation matrix
layer_stat_cor_plot(cor_stats_layer)

## Restrict the range of colors
layer_stat_cor_plot(cor_stats_layer, max = 0.3)

libd_layer_colors Vector of LIBD layer colors

Description

A named vector of colors to use for the LIBD layers designed by Lukas M. Weber with feedback
from the spatialLIBD collaborators.

Usage

libd_layer_colors

Format

A vector of length 9 with colors for Layers 1 through 9, WM, NA and a special WM2 that is present
in some of the unsupervised clustering results.

read_image Read image

Description

Helper function for geom_plot() that was needed in order to complete sce_to_ve(). It generates
the grid::rasterGrob() data needed by geom_plot() that was previously included in the output
from fetch_data("sce").

Usage

read_image(ve, sample_id = names(imagePaths(ve))[1])

Arguments

ve A VisiumExperiment-class object created, such as one created by sce_to_ve().

sample_id A character(1) specifying the sample ID to work with.

Value

A tibble::tible() with a grob column that is a list() with a grid::rasterGrob() object.
@author Brenda Pardo, Leonardo Collado-Torres

See Also

Other VisiumExperiment-related functions: sce_to_ve(), ve_image_colData()



22 run_app

run_app Run the spatialLIBD Shiny Application

Description

This function runs the shiny application that allows users to interact with the Visium spatial tran-
scriptomics data from LIBD (by default) or any other data that you have shaped according to our
object structure.

Usage

run_app(
sce = fetch_data(type = "sce"),
sce_layer = fetch_data(type = "sce_layer"),
modeling_results = fetch_data(type = "modeling_results"),
sig_genes = sig_genes_extract_all(n = nrow(sce_layer), modeling_results =
modeling_results, sce_layer = sce_layer),

image_path = system.file("app", "www", "data", package = "spatialLIBD"),
sce_discrete_vars = c("GraphBased", "Layer", "Maynard", "Martinowich",
paste0("SNN_k50_k", 4:28), "SpatialDE_PCA", "SpatialDE_pool_PCA", "HVG_PCA",
"pseudobulk_PCA", "markers_PCA", "SpatialDE_UMAP", "SpatialDE_pool_UMAP", "HVG_UMAP",
"pseudobulk_UMAP", "markers_UMAP", "SpatialDE_PCA_spatial",
"SpatialDE_pool_PCA_spatial", "HVG_PCA_spatial", "pseudobulk_PCA_spatial",

"markers_PCA_spatial", "SpatialDE_UMAP_spatial", "SpatialDE_pool_UMAP_spatial",
"HVG_UMAP_spatial", "pseudobulk_UMAP_spatial", "markers_UMAP_spatial"),

sce_continuous_vars = c("cell_count", "sum_umi", "sum_gene", "expr_chrM",
"expr_chrM_ratio"),

spatial_libd_var = "layer_guess_reordered_short",
...

)

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

sce_layer Defaults to the output of fetch_data(type = 'sce_layer'). This is a Single-
CellExperiment object with the spot-level Visium data compressed via pseudo-
bulking to the layer-level (group-level) resolution. See fetch_data() for more
details.

modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is
a list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results, the
p-values, and the FDR adjusted p-values. Then the ensembl column is used for
matching in some cases. See fetch_data() for more details.

sig_genes The output of sig_genes_extract_all() which is a table in long format with
the modeling results.

image_path A path to the directory containing the low resolution histology images that is
needed for the interactive visualizations with plotly. See https://github.com/LieberInstitute/spatialLIBD/tree/master/inst/app/www/data
for an example of how these files should be organized.



sce_image_clus 23

sce_discrete_vars

A character() vector of discrete variables that will be available to visualize in
the app. Basically, the set of variables with spot-level groups. They will have to
be present in colData(sce).

sce_continuous_vars

A character() vector of continuous variables that will be available to visual-
ize in the app using the same scale as genes. They will have to be present in
colData(sce).

spatial_libd_var

A character(1) with the name of the main cluster variable to use. It will have
to be present in both colData(sce) and colData(sce_layer).

... Other arguments passed to the list of golem options for running the application.

Value

A shiny.appobj that contains the input data.

Examples

## Not run:
## The default arguments will download the data from the web
## using fetch_data(). If this is the first time you have run this,
## the files will need to be cached by ExperimentHub. Otherwise it
## will re-use the files you have previously downloaded.
if (enough_ram(4e9)) {

run_app()
}

## End(Not run)

sce_image_clus Sample spatial cluster visualization

Description

This function visualizes the clusters for one given sample at the spot-level using (by default) the
histology information on the background. To visualize gene-level (or any continuous variable) use
sce_image_gene().

Usage

sce_image_clus(
sce,
sampleid,
clustervar,
colors = c("#b2df8a", "#e41a1c", "#377eb8", "#4daf4a", "#ff7f00", "gold", "#a65628",

"#999999", "black", "grey", "white", "purple"),
spatial = TRUE,
...

)



24 sce_image_clus

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

sampleid A character(1) specifying which sample to plot from colData(sce)$sample_name.

clustervar A character(1) with the name of the colData(sce) column that has the clus-
ter values.

colors A vector of colors to use for visualizing the clusters from clustervar. If the
vector has names, then those should match the values of clustervar.

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

... Passed to paste0() for making the title of the plot following the sampleid.

Details

This function subsets sce to the given sample and prepares the data and title for sce_image_clus_p().

Value

A ggplot2 object.

See Also

Other Spatial cluster visualization functions: sce_image_clus_p(), sce_image_grid()

Examples

if (enough_ram()) {
## Obtain the necessary data
if (!exists("sce")) sce <- fetch_data("sce")

## Check the colors defined by Lukas M Weber
libd_layer_colors

## Use the manual color palette by Lukas M Weber
sce_image_clus(

sce = sce,
clustervar = "layer_guess_reordered",
sampleid = "151673",
colors = libd_layer_colors,
... = " LIBD Layers"

)

## Works also with VisiumExperiment objects.
sce_image_clus(

sce = sce_to_ve(sce),
clustervar = "layer_guess_reordered",
sampleid = "151673",
colors = libd_layer_colors,
... = " LIBD Layers"

)



sce_image_clus_p 25

## Without histology
sce_image_clus(

sce = sce,
clustervar = "layer_guess_reordered",
sampleid = "151673",
colors = libd_layer_colors,
... = " LIBD Layers",
spatial = FALSE

)
}

sce_image_clus_p Sample spatial cluster visualization workhorse function

Description

This function visualizes the clusters for one given sample at the spot-level using (by default) the
histology information on the background. This is the function that does all the plotting behind
sce_image_clus(). To visualize gene-level (or any continuous variable) use sce_image_gene_p().

Usage

sce_image_clus_p(sce, d, clustervar, sampleid, colors, spatial, title)

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

d A data.frame with the sample-level information. This is typically obtained using
as.data.frame(colData(sce)).

clustervar A character(1) with the name of the colData(sce) column that has the clus-
ter values.

sampleid A character(1) specifying which sample to plot from colData(sce)$sample_name.

colors A vector of colors to use for visualizing the clusters from clustervar. If the
vector has names, then those should match the values of clustervar.

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

title The title for the plot.

Value

A ggplot2 object.

See Also

Other Spatial cluster visualization functions: sce_image_clus(), sce_image_grid()



26 sce_image_gene

Examples

if (enough_ram()) {
## Obtain the necessary data
if (!exists("sce")) sce <- fetch_data("sce")
sce_sub <- sce[, sce$sample_name == "151673"]

## Use the manual color palette by Lukas M Weber
## Don't plot the histology information
sce_image_clus_p(

sce = sce_sub,
d = as.data.frame(colData(sce_sub)),
clustervar = "layer_guess_reordered",
sampleid = "151673",
colors = libd_layer_colors,
title = "151673 LIBD Layers",
spatial = FALSE

)

## Clean up
rm(sce_sub)

}

sce_image_gene Sample spatial gene visualization

Description

This function visualizes the gene expression stored in assays(sce) or any continuous variable
stored in colData(sce) for one given sample at the spot-level using (by default) the histology infor-
mation on the background. To visualize clusters (or any discrete variable) use sce_image_clus().

Usage

sce_image_gene(
sce,
sampleid,
geneid = "SCGB2A2; ENSG00000110484",
spatial = TRUE,
assayname = "logcounts",
minCount = 0,
viridis = TRUE,
...

)

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

sampleid A character(1) specifying which sample to plot from colData(sce)$sample_name.



sce_image_gene 27

geneid A character(1) specifying the gene ID stored in rowData(sce)$gene_search
or a continuous variable stored in colData(sce) to visualize.

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

assayname The name of the assays(sce) to use for extracting the gene expression data.
Defaults to logcounts.

minCount A numeric(1) specifying the minimum gene expression (or value in the contin-
uous variable) to visualize. Values at or below this threshold will be set to NA.
Defaults to 0.

viridis A logical(1) whether to use the color-blind friendly palette from viridis or
the color palette used in the paper that was chosen for contrast when visualizing
the data on top of the histology image. One issue is being able to differentiate
low values from NA ones due to the purple-ish histology information that is
dependent on cell density.

... Passed to paste0() for making the title of the plot following the sampleid.

Details

This function subsets sce to the given sample and prepares the data and title for sce_image_gene_p().
It also adds a caption to the plot.

Value

A ggplot2 object.

See Also

Other Spatial gene visualization functions: sce_image_gene_p(), sce_image_grid_gene()

Examples

if (enough_ram()) {
## Obtain the necessary data
if (!exists("sce")) sce <- fetch_data("sce")

## Valid `geneid` values are those in
head(rowData(sce)$gene_search)
## or continuous variables stored in colData(sce)

## Visualize a default gene on the non-viridis scale
sce_image_gene(

sce = sce,
sampleid = "151507",
viridis = FALSE

)

## Works also with VisiumExperiment objects
sce_image_gene(

sce = sce_to_ve(sce),
sampleid = "151507",
viridis = FALSE

)



28 sce_image_gene_p

## Visualize a continuous variable, in this case, the ratio of chrM
## gene expression compared to the total expression at the spot-level
sce_image_gene(

sce = sce,
sampleid = "151507",
geneid = "expr_chrM_ratio"

)
}

sce_image_gene_p Sample spatial gene visualization workhorse function

Description

This function visualizes the gene expression stored in assays(sce) or any continuous variable
stored in colData(sce) for one given sample at the spot-level using (by default) the histology infor-
mation on the background. This is the function that does all the plotting behind sce_image_gene().
To visualize clusters (or any discrete variable) use sce_image_clus_p().

Usage

sce_image_gene_p(sce, d, sampleid, spatial, title, viridis = TRUE)

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

d A data.frame with the sample-level information. This is typically obtained using
as.data.frame(colData(sce)). The data.frame has to contain a column with
the continuous variable data to plot stored under d$COUNT.

sampleid A character(1) specifying which sample to plot from colData(sce)$sample_name.

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

title The title for the plot.

viridis A logical(1) whether to use the color-blind friendly palette from viridis or
the color palette used in the paper that was chosen for contrast when visualizing
the data on top of the histology image. One issue is being able to differentiate
low values from NA ones due to the purple-ish histology information that is
dependent on cell density.

Value

A ggplot2 object.

See Also

Other Spatial gene visualization functions: sce_image_gene(), sce_image_grid_gene()



sce_image_grid 29

Examples

if (enough_ram()) {
## Obtain the necessary data
if (!exists("sce")) sce <- fetch_data("sce")

## Prepare the data for the plotting function
sce_sub <- sce[, sce$sample_name == "151673"]
df <- as.data.frame(colData(sce_sub))
df$COUNT <- df$expr_chrM_ratio

## Use the manual color palette by Lukas M Weber
## Don't plot the histology information
sce_image_gene_p(

sce = sce_sub,
d = df,
sampleid = "151673",
title = "151673 chrM expr ratio",
spatial = FALSE

)

## Or you can do this with a VisiumEsperiment object
ve_sub <- sce_to_ve(sce_sub)
df2 <- colData(ve_sub)
df2$COUNT <- df2$expr_chrM_ratio

sce_image_gene_p(
sce = ve_sub,
d = df2,
sampleid = "151673",
title = "151673 chrM expr ratio",
spatial = FALSE

)

## Clean up
rm(sce_sub)
rm(ve_sub)

}

sce_image_grid Sample spatial cluster visualization grid

Description

This function visualizes the clusters for a set of samples at the spot-level using (by default) the
histology information on the background. To visualize gene-level (or any continuous variable) use
sce_image_grid_gene().

Usage

sce_image_grid(
sce,



30 sce_image_grid

clustervar,
pdf_file,
sort_clust = TRUE,
colors = NULL,
return_plots = FALSE,
spatial = TRUE,
...

)

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

clustervar A character(1) with the name of the colData(sce) column that has the clus-
ter values.

pdf_file A character(1) specifying the path for the resulting PDF.

sort_clust A logical(1) indicating whether you want to sort the clusters by frequency
using sort_clusters().

colors A vector of colors to use for visualizing the clusters from clustervar. If the
vector has names, then those should match the values of clustervar.

return_plots A logical(1) indicating whether to print the plots to a PDF or to return the list
of plots that you can then print using plot_grid.

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

... Passed to paste0() for making the title of the plot following the sampleid.

Details

This function prepares the data and then loops through sce_image_clus() for computing the list
of ggplot2 objects.

Value

A list of ggplot2 objects.

See Also

Other Spatial cluster visualization functions: sce_image_clus_p(), sce_image_clus()

Examples

if (enough_ram()) {
## Obtain the necessary data
if (!exists("sce")) sce <- fetch_data("sce")

## Subset to two samples of interest
sce_sub <- sce[, sce$sample_name %in% c("151673", "151674")]

## Obtain the plot list
p_list <-



sce_image_grid_gene 31

sce_image_grid(
sce_sub,
"layer_guess_reordered",
spatial = FALSE,
return_plots = TRUE,
sort_clust = FALSE,
colors = libd_layer_colors

)

## Or you can do this with a VisiumEsperiment object
ve_sub <- sce_to_ve(sce_sub)
p_list <-

sce_image_grid(
ve_sub,
"layer_guess_reordered",
spatial = FALSE,
return_plots = TRUE,
sort_clust = FALSE,
colors = libd_layer_colors

)

## Clean up
rm(sce_sub)

## Visualize the spatial adjacent replicates for position = 0 micro meters
## for subject 3
cowplot::plot_grid(plotlist = p_list, ncol = 2)

}

sce_image_grid_gene Sample spatial gene visualization grid

Description

This function visualizes the gene expression stored in assays(sce) or any continuous variable
stored in colData(sce) for a set of samples at the spot-level using (by default) the histology infor-
mation on the background. To visualize clusters (or any discrete variable) use sce_image_grid().

Usage

sce_image_grid_gene(
sce,
geneid = "SCGB2A2; ENSG00000110484",
pdf_file,
assayname = "logcounts",
minCount = 0,
return_plots = FALSE,
spatial = TRUE,
viridis = TRUE,
...

)



32 sce_image_grid_gene

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

geneid A character(1) specifying the gene ID stored in rowData(sce)$gene_search
or a continuous variable stored in colData(sce) to visualize.

pdf_file A character(1) specifying the path for the resulting PDF.

assayname The name of the assays(sce) to use for extracting the gene expression data.
Defaults to logcounts.

minCount A numeric(1) specifying the minimum gene expression (or value in the contin-
uous variable) to visualize. Values at or below this threshold will be set to NA.
Defaults to 0.

return_plots A logical(1) indicating whether to print the plots to a PDF or to return the list
of plots that you can then print using plot_grid.

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

viridis A logical(1) whether to use the color-blind friendly palette from viridis or
the color palette used in the paper that was chosen for contrast when visualizing
the data on top of the histology image. One issue is being able to differentiate
low values from NA ones due to the purple-ish histology information that is
dependent on cell density.

... Passed to paste0() for making the title of the plot following the sampleid.

Details

This function prepares the data and then loops through sce_image_gene() for computing the list
of ggplot2 objects.

Value

A list of ggplot2 objects.

See Also

Other Spatial gene visualization functions: sce_image_gene_p(), sce_image_gene()

Examples

if (enough_ram()) {
## Obtain the necessary data
if (!exists("sce")) sce <- fetch_data("sce")

## Subset to two samples of interest
sce_sub <- sce[, sce$sample_name %in% c("151673", "151674")]

## Obtain the plot list
p_list <-

sce_image_grid_gene(
sce_sub,
spatial = FALSE,



sce_to_ve 33

return_plots = TRUE
)

## Or you can do this with a VisiumEsperiment object
ve_sub <- sce_to_ve(sce_sub)
p_list <-

sce_image_grid_gene(
ve_sub,
spatial = FALSE,
return_plots = TRUE

)

## Clean up
rm(sce_sub)

## Visualize the spatial adjacent replicates for position = 0 micro meters
## for subject 3
cowplot::plot_grid(plotlist = p_list, ncol = 2)

}

sce_to_ve Convert a SCE object to a VE one

Description

This function converts a spot-level SingleCellExperiment-class (SCE) object as generated by fetch_data()
to a VisiumExperiment-class (VE) object.

Usage

sce_to_ve(sce = fetch_data("sce"), bfc = BiocFileCache::BiocFileCache())

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

bfc A BiocFileCache object BiocFileCache-class. Used when eh is not available.

Details

Note that the resulting object is a bit more complex than a regular VE because it contains the data
for multiple images. Also, the VE validity code checks that the images files exist locally instead of
being available remotely through a URL. Thus, we decided to download the images the moment the
VE object is created. To deal with the fact that we have multiple images, we implemented the func-
tion update_scaleFactors() and read_image() which is used in the example of geom_plot().

Value

A a VisiumExperiment-class object with some customization for our data. See update_scaleFactors()
for more details.



34 sig_genes_extract

Author(s)

Brenda Pardo, Leonardo Collado-Torres

See Also

Other VisiumExperiment-related functions: read_image(), ve_image_colData()

Examples

if (enough_ram()) {
## Download the sce data
sce <- fetch_data("sce")
## Transform it to a VisiumExperiment object
ve <- sce_to_ve(sce)

}

sig_genes_extract Extract significant genes

Description

From the layer-level modeling results, this function extracts the top n significant genes. This is the
workhorse function used by sig_genes_extract_all() through which we obtain the information
that can then be used by functions such as layer_boxplot() for constructing informative titles.

Usage

sig_genes_extract(
n = 10,
modeling_results = fetch_data(type = "modeling_results"),
model_type = names(modeling_results)[1],
reverse = FALSE,
sce_layer = fetch_data(type = "sce_layer")

)

Arguments

n The number of the top ranked genes to extract.
modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is
a list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results, the
p-values, and the FDR adjusted p-values. Then the ensembl column is used for
matching in some cases. See fetch_data() for more details.

model_type A named element of the modeling_results list. By default that is either enrichment
for the model that tests one human brain layer against the rest (one group vs the
rest), pairwise which compares two layers (groups) denoted by layerA-layerB
such that layerA is greater than layerB, and anova which determines if any
layer (group) is different from the rest adjusting for the mean expression level.
The statistics for enrichment and pairwise are t-statistics while the anova
model ones are F-statistics.



sig_genes_extract_all 35

reverse A logical(1) indicating whether to multiply by -1 the input statistics and re-
verse the layerA-layerB column names (using the -) into layerB-layerA.

sce_layer Defaults to the output of fetch_data(type = 'sce_layer'). This is a Single-
CellExperiment object with the spot-level Visium data compressed via pseudo-
bulking to the layer-level (group-level) resolution. See fetch_data() for more
details.

Value

A data.frame() with the top n significant genes (as ordered by their statistics in decreasing order)
in long format. The specific columns are described further in the vignette.

References

Adapted from https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/layer_specificity_functions.R

See Also

Other Layer modeling functions: layer_boxplot(), sig_genes_extract_all()

Examples

## Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

if (!exists("sce_layer")) sce_layer <- fetch_data(type = "sce_layer")

## anova top 10 genes
sig_genes_extract(

modeling_results = modeling_results,
sce_layer = sce_layer

)

## Extract all genes
sig_genes_extract(

modeling_results = modeling_results,
sce_layer = sce_layer,
n = nrow(sce_layer)

)

sig_genes_extract_all Extract significant genes for all modeling results

Description

This function combines the output of sig_genes_extract() from all the layer-level (group-level)
modeling results and builds the data required for functions such as layer_boxplot().



36 sort_clusters

Usage

sig_genes_extract_all(
n = 10,
modeling_results = fetch_data(type = "modeling_results"),
sce_layer = fetch_data(type = "sce_layer")

)

Arguments

n The number of the top ranked genes to extract.
modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is
a list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results, the
p-values, and the FDR adjusted p-values. Then the ensembl column is used for
matching in some cases. See fetch_data() for more details.

sce_layer Defaults to the output of fetch_data(type = 'sce_layer'). This is a Single-
CellExperiment object with the spot-level Visium data compressed via pseudo-
bulking to the layer-level (group-level) resolution. See fetch_data() for more
details.

Value

A DataFrame-class with the extracted statistics in long format. The specific columns are described
further in the vignette.

See Also

Other Layer modeling functions: layer_boxplot(), sig_genes_extract()

Examples

## Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

if (!exists("sce_layer")) sce_layer <- fetch_data(type = "sce_layer")

## top 10 genes for all models
sig_genes_extract_all(

modeling_results = modeling_results,
sce_layer = sce_layer

)

sort_clusters Sort clusters by frequency

Description

This function takes a vector with cluster labels and sorts it by frequency such that the most frequent
cluster is the first one and so on.



tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer 37

Usage

sort_clusters(clusters, map_subset = NULL)

Arguments

clusters A vector with cluster labels.

map_subset A logical vector of length equal to clusters specifying which elements of
clusters to use to determine the ranking of the clusters.

Value

A factor of length equal to clusters where the levels are the new ordered clusters and the names
of the factor are the original values from clusters.

Examples

## Build an initial set of cluster labels
clus <- letters[unlist(lapply(4:1, function(x) rep(x, x)))]

## In this case, it's a character vector
class(clus)

## Sort them and obtain a factor
sort_clusters(clus)

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer

Cell cluster t-statistics from Tran et al

Description

Using the DLPFC snRNA-seq data from Matthew N Tran et al we computed enrichment t-statistics
for the cell clusters. This is a subset of them used in examples such as in layer_stat_cor_plot().

Usage

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer

Format

A matrix with 692 rows and 31 variables where each column is a given cell cluster from Tran et al
and each row is one gene. The row names are Ensembl gene IDs which are used by layer_stat_cor()
to match to our modeling results.

Source

https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/
dlpfc_snRNAseq_annotation.R and https://github.com/LieberInstitute/spatialLIBD/blob/
master/dev/02_dev.R#L107-L194.

https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/dlpfc_snRNAseq_annotation.R
https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/dlpfc_snRNAseq_annotation.R
https://github.com/LieberInstitute/spatialLIBD/blob/master/dev/02_dev.R#L107-L194
https://github.com/LieberInstitute/spatialLIBD/blob/master/dev/02_dev.R#L107-L194


38 ve_image_colData

update_scaleFactors Update the VisiumExperiment scaleFactors

Description

Given that our data is a custom VisiumExperiment-class object with 12 images instead of 1, this
function is useful for updating the scaleFactors for a given image.

Usage

update_scaleFactors(ve, sample_id)

Arguments

ve A VisiumExperiment-class object created with fetch_data().

sample_id A character(1) with the name of sample of interest.

Value

A VisiumExperiment-class object with the updated scaleFactors for the given input sample_id.

Examples

if (enough_ram()) {
## Obtain the necessary data
if (!exists("ve")) ve <- fetch_data("ve")

## Load the SpatialExperiment package
library("SpatialExperiment")

## Check the default scale factors
scaleFactors(ve)[1:4]

## Replace them for those for the second image and check them
ve <- update_scaleFactors(ve, "151508")
scaleFactors(ve)[1:4]

## Restore the original ones from the first image
ve <- update_scaleFactors(ve, "151507")
scaleFactors(ve)[1:4]

}

ve_image_colData Create a data frame with required columns of the ve object to use
sce_image_gene_p() function

Description

Function that creates a data frame containing the colData columns from the ve object and the ar-
ray_row and array_col from the spatialCoords slot. This allows to use the functions sce_image_gene_p()
and sce_image_clus_p() with ve objects.



ve_image_colData 39

Usage

ve_image_colData(ve, meta = as.data.frame(colData(ve)))

Arguments

ve A VisiumExperiment-class object created, such as one created by sce_to_ve().
It is a subset containing data of just one sample.

meta A data.frame containing colData columns from the ve object.

Value

A data.frame containing colData columns from the ve object and the pxl_col_in_fullres and
pxl_row_in_fullres from the spatialCoords slot renamed as imagecol and imagerow.

Author(s)

Brenda Pardo, Leonardo Collado-Torres

See Also

Other VisiumExperiment-related functions: read_image(), sce_to_ve()



Index

∗ Check input functions
check_image_path, 2
check_modeling_results, 3
check_sce, 4
check_sce_layer, 5

∗ Gene set enrichment functions
gene_set_enrichment, 8
gene_set_enrichment_plot, 10

∗ Layer correlation functions
layer_stat_cor, 18
layer_stat_cor_plot, 19

∗ Layer modeling functions
layer_boxplot, 14
sig_genes_extract, 34
sig_genes_extract_all, 35

∗ Spatial cluster visualization functions
sce_image_clus, 23
sce_image_clus_p, 25
sce_image_grid, 29

∗ Spatial gene visualization functions
sce_image_gene, 26
sce_image_gene_p, 28
sce_image_grid_gene, 31

∗ VisiumExperiment-related functions
read_image, 21
sce_to_ve, 33
ve_image_colData, 38

∗ datasets
libd_layer_colors, 21
tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer,

37

BiocFileCache-class, 7, 33

check_image_path, 2, 4, 5
check_modeling_results, 3, 3, 5
check_sce, 3, 4, 4, 5
check_sce_layer, 3–5, 5

DataFrame-class, 36

enough_ram, 6
ExperimentHub-class, 7

fetch_data, 7

fetch_data(), 3–5, 8, 15, 18, 22, 24–26, 28,
30, 32–36

fields::image.plot(), 17

gene_set_enrichment, 8, 11
gene_set_enrichment(), 10
gene_set_enrichment_plot, 9, 10
gene_set_enrichment_plot(), 17
geom_spatial, 12
geom_spatial(), 24, 25, 27, 28, 30, 32
get_colors, 13
ggplot2, 24, 25, 27, 28, 30, 32
ggplot2::layer(), 12
ggplotly(), 24, 25, 27, 28, 30, 32
graphics::par(), 17

layer_boxplot, 14, 35, 36
layer_boxplot(), 34, 35
layer_matrix_plot, 16
layer_matrix_plot(), 10, 20
layer_stat_cor, 18, 20
layer_stat_cor(), 19, 20, 37
layer_stat_cor_plot, 19, 19
layer_stat_cor_plot(), 17, 37
libd_layer_colors, 21

palette36.colors, 13
paste0(), 24, 27, 30, 32
plot_grid, 30, 32

read_image, 21, 34, 39
run_app, 22

scaleFactors, 38
sce_image_clus, 23, 25, 30
sce_image_clus(), 25, 26, 30
sce_image_clus_p, 24, 25, 30
sce_image_clus_p(), 12, 24, 28
sce_image_gene, 26, 28, 32
sce_image_gene(), 23, 28, 32
sce_image_gene_p, 27, 28, 32
sce_image_gene_p(), 12, 25, 27
sce_image_grid, 24, 25, 29
sce_image_grid(), 31
sce_image_grid_gene, 27, 28, 31

40



INDEX 41

sce_image_grid_gene(), 29
sce_to_ve, 21, 33, 39
shiny.appobj, 23
sig_genes_extract, 15, 34, 36
sig_genes_extract(), 35
sig_genes_extract_all, 15, 35, 35
sig_genes_extract_all(), 14, 22, 34
SingleCellExperiment, 3, 5, 7, 15, 22,

24–26, 28, 30, 32, 33, 35, 36
SingleCellExperiment-class, 33
sort_clusters, 36
sort_clusters(), 30
stats::fisher.test(), 9

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer,
37

unname(), 14
update_scaleFactors, 38
utils::download.file(), 7

ve_image_colData, 21, 34, 38
viridis, 27, 28, 32
VisiumExperiment-class, 7, 21, 33, 38, 39


	check_image_path
	check_modeling_results
	check_sce
	check_sce_layer
	enough_ram
	fetch_data
	gene_set_enrichment
	gene_set_enrichment_plot
	geom_spatial
	get_colors
	layer_boxplot
	layer_matrix_plot
	layer_stat_cor
	layer_stat_cor_plot
	libd_layer_colors
	read_image
	run_app
	sce_image_clus
	sce_image_clus_p
	sce_image_gene
	sce_image_gene_p
	sce_image_grid
	sce_image_grid_gene
	sce_to_ve
	sig_genes_extract
	sig_genes_extract_all
	sort_clusters
	tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer
	update_scaleFactors
	ve_image_colData
	Index

