Package ‘tutorial.helpers’

June 26, 2024

Title Helper Functions for Creating Tutorials
Version 0.3.0

Description Helper functions for creating, editing, and testing tutorials
created with the 'learnr' package. Provides a simple method for allowing
students to download their answers to tutorial questions. For examples
of its use, see the 'rdds.tutorials' and "primer.tutorials' packages.

Depends R (>=4.1.0)

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

VignetteBuilder knitr

Suggests knitr, roxygen2, rsconnect, shinytest, testthat (>= 3.0.0)

Config/testthat/edition 3

Imports dplyr, learnr, mime, parsermd, purrr, readr, rmarkdown,
rstudioapi, rvest, shiny, stringr, tibble

BugReports https://github.com/PPBDS/tutorial.helpers/issues

URL https://ppbds.github.io/tutorial.helpers/,
https://github.com/PPBDS/tutorial.helpers

NeedsCompilation no

Author David Kane [aut, cre, cph] (<https://orcid.org/0000-0002-6660-3934>)

Maintainer David Kane <dave.kane@gmail.com>

Repository CRAN

Date/Publication 2024-06-26 19:00:02 UTC

Contents

check_current_tutorial L e
check tutorial_defaults
determine_code_chunk name

https://github.com/PPBDS/tutorial.helpers/issues
https://ppbds.github.io/tutorial.helpers/
https://github.com/PPBDS/tutorial.helpers
https://orcid.org/0000-0002-6660-3934

Index

check_tutorial_defaults

determine_exercise_NUMDEr v v v v v e e e e e e e e e e 3
format_tutorial e e 4
get_submissions_from_learnr_sessiono 4
knit_tutorials L. e e e e e e e 5
MAKE_EXEICISE . . .« v v v e v e 5
Process_SubmiSSionS oL e e e e e e 6
return_tutorial_paths 7
set_binary_only_in r profile L 8
set_rstudio_settings L. e e e e 8
show_file e 9
SUDMISSION_SEIVEr & o v o o e e e e e e e e e e e e e e e e 10
WIILE _ANSWETS . . o v v v o o e e e e e e e e e e e e e e 11

12

check_current_tutorial

Check current tutorial

Description

An add-in for formatting tutorials.

Uses format_tutorial() to format the tutorial Rmd open in the current editor

Usage

check_current_tutorial()

check_tutorial_defaults

Confirm that a tutorial has the recommended components

Description

There are three code components: the use of a copy-code button, an information request, and a
download page. It is tricky to know where to store the "truth" of what these components should
look like. For now, the truth is defined as the skeleton.Rmd which defines the template for creating
a new tutorial.

All tutorials should also have library(learnr) and library(tutorial.helpers), both of which
exist in the skeleton

Usage

check_tutorial_defaults(tutorial_paths)

determine_code_chunk_name

Arguments

tutorial_paths Character vector of the paths to the tutorials to be examined.

Value

No return value, called for side effects.

Examples

check_tutorial_defaults(tutorial_paths = return_tutorial_paths(”tutorial.helpers”))

determine_code_chunk_name
Determine the code chunk name of a new exercise in a tutorial.

Description

Determine the code chunk name of a new exercise in a tutorial.

Usage

determine_code_chunk_name(file_path = NULL)

Arguments

file_path Character string of the file path to the tutorial

Value

The section id of the exercise based on its section

determine_exercise_number
Finds the number of the next exercise in a tutorial

Description

Finds the number of the next exercise in a tutorial

Usage

determine_exercise_number(file_path = NULL)

Arguments

file_path Character string of the file path to the tutorial

4 get_submissions_from_learnr_session

Value

The next exercise number based on the file argument or the active document.

format_tutorial Re-format a tutorial

Description

A function for formatting tutorial Rmd files. Used by check_current_tutorial() to re-format the
currently open tutorial in RStudio. It renumbers the exercises so that they are in order. It ensures
that chunk labels use this numbering, along with the section title.

Usage

format_tutorial(file_path)

Arguments

file_path Character string.

Value

Formatted document with correct exercise, hint and test chunk labels.

get_submissions_from_learnr_session
Return a list of tutorial answers

Description

Grabs information from the learnr session environment, not directly from the session object it-
self. Since we are using the session environment, we currently don’t (?) have a way to save the
environment and hence can’t test this function.

Usage

get_submissions_from_learnr_session(sess)

Arguments

sess session object from shiny with learnr

Value

a list which includes the exercise submissions of tutorial

knit_tutorials 5

knit_tutorials Knit a set of tutorials

Description

We define "testing" a tutorial as (successfully) running render () on it. This function renders all
the tutorials provided in tutorial_paths. There is no check to see if the rendered file looks OK.
If a tutorial fails to render, then (we assume!) an error will be generated which will then filter up to
our testing rig.

Usage

knit_tutorials(tutorial_paths)

Arguments

tutorial_paths Character vector of the paths to the tutorials to be knitted.

Value

No return value, called for side effects.

Examples

knit_tutorials(tutorial_paths = return_tutorial_paths("tutorial.helpers”))

make_exercise Add a tutorial code exercise or question to the active document

Description

When writing tutorials, it is handy to be able to insert the skeleton for a new code exercise or
question. We bind make_exercise() and friends as an RStudio add-in to provide this functionality.
Note that the function determines the correct exercise number to use and also adds appropriate code
chunk names, based on the exercise number and section title.

Usage
make_exercise(type = "code"”, file_path = NULL)
make_no_answer ()

make_yes_answer ()

6 process_submissions

Arguments
type Character of question type. Must be one of "code", "no-answer", or "yes-
answer".
file_path Character path to a file. If NULL, the RStudio active document is used, which
is the default behavior. An actual file path is used for testing.
Details

It appears that the RStudio addins must have function names only as the Binding value. In other
words, you can’t have make_exercise(type = 'no-answer') as the value. So, we need two extra
functions — make_no_answer () and make_yes_answer () —which just call make_exercise()
while passing in the correct argument.

Value

Exercise skeleton corresponding to the type argument.

process_submissions Process Submissions

Description

This function processes submissions from a directory containing HTML/XML files. It extracts
tables from the files, filters them based on a pattern and key variables, and returns either a summary
tibble or a combined tibble with all the data.

Usage
process_submissions(
path,
pattern = ".",
return_value = "Summary”,

key_vars = NULL,
verbose = 0,
keep_file_name = NULL

)

Arguments
path The path to the directory containing the HTML/XML files.
pattern The pattern to match against the file names (default: ".").

return_value The type of value to return. Allowed values are "Summary" (default) or "All".

key_vars A character vector of key variables to extract from the "id" column (default:
NULL).

return_tutorial_paths 7

verbose An integer specifying the verbosity level. 0: no messages, 1: file count mes-
sages, 2: some detailed messages about files, 3: detailed messages including all
file problems (default: 0).

keep_file_name Specifies whether to keep the file name in the summary tibble. Allowed val-
ues are NULL (default), "All" (keep entire file name), "Space" (keep up to
first space), or "Underscore" (keep up to first underscore). Only used when
return_value is "Summary".

Value

If return_value is "Summary", returns a tibble with one row for each file, columns corresponding
to the key_vars, and an additional "answers" column indicating the number of rows in each tibble.
If return_value is "All", returns a tibble with all the data combined from all the files.

Examples

Not run:
Process submissions with default settings
process_submissions("path/to/directory”)

Process submissions with a specific pattern and key variables
process_submissions("path/to/directory”, pattern = "*submission”, key_vars = c("name”, "email"))

Process submissions and return all data
process_submissions("path/to/directory”, return_value = "All")

Process submissions with verbose output (level 3)
process_submissions("path/to/directory”, verbose = 3)

Process submissions and keep the entire file name in the summary tibble
process_submissions("path/to/directory”, return_value = "Summary”, keep_file_name = "All")

End(Not run)

return_tutorial_paths Return all the paths to the tutorials in a package

Description
Takes a package name and returns a character vector of all the paths to tutorials in the installed
package. Assumes that every Rmd file in inst/tutorials/*/ is a tutorial, which should be true.

Usage

return_tutorial_paths(package)

Arguments

package Character vector of the package name to be tested.

8 set_rstudio_settings

Value

Character vector of the full paths to all installed tutorials in package.

Examples

return_tutorial_paths('learnr")

set_binary_only_in_r_profile
Set pkgType to binary in .Rprofile

Description

This functions sets the pkgType global option to "binary" in your .Rprofile. New R users, es-
pecially those on Windows, should never install from source. Doing so fails too often, and too
confusingly. It also sets the value for this R session. So, you do not need to either restart R nor
source the .Rprofile by hand.

You can examine your .Rprofile to confirm this change with usethis::edit_r_profile()

Usage

set_binary_only_in_r_profile()

Value

No return value, called for side effects.

set_rstudio_settings Select smart setting for RStudio

Description

This function changes RStudio settings in order to make learning easier for new users. These set-
tings are stored in: ~/.config/rstudio/rstudio-prefs.json. The most important changes are save_workspace
to "never”, load_workspace to FALSE, and "insert_native_pipe_operator" to TRUE. All those
changes are good for any user, new or old.

We also change rmd_viewer_type to "pane”, show_hidden_files to TRUE, rmd_chunk_output_inline
to FALSE, source_with_echo to TRUE, and packages_pane_enabled to FALSE. These settings
make RStudio less confusing to new users. The rmd_viewer_type setting is especially useful

to students copy/pasting from the Console/Terminal to a tutorial.

The last two changes are setting both rainbow_parentheses and syntax_color_console to TRUE.
We think that these settings make coding errors less likely.

show_file 9

Usage

set_rstudio_settings(set.binary = TRUE)

Arguments
set.binary Logical, set to TRUE, which indicates whether or not set_binary_only_in_r_profile()
should be run at the end.
Value

No return value, called for side effects.

show_file Display the contents of a text file that match a pattern

Description

This function reads the contents of a text file and either prints the specified range of rows that match
a given regular expression pattern or prints the code lines within R code chunks. If start is a negative
number, it prints the last abs(start) lines, ignoring missing lines at the end of the file.

Usage

show_file(path, start = 1, end = NULL, pattern = NULL, chunk = "None")

Arguments
path A character vector representing the path to the text file.
start An integer specifying the starting row number (inclusive) to consider. Default is
1. If negative, it represents the number of lines to print from the end of the file.
end An integer specifying the ending row number (inclusive) to consider. Default is
the last row.
pattern A regular expression pattern to match against each row. Default is NULL (no
pattern matching).
chunk A character string indicating whether to print code lines within R code chunks.
Possible values are "None" (default), "All" (print all code chunks), or "Last"
(print only the last code chunk).
Value

The function prints the contents of the specified range of rows that match the pattern (if provided)
or the code lines within R code chunks (if chunk is TRUE) to the console. If no rows match the
pattern, nothing is printed. If start is negative, the function prints the last abs(start) lines, ignoring
missing lines at the end of the file.

10 submission_server

Examples

Not run:
Display all rows of a text file
show_file("path/to/your/file.txt")

Display rows 5 to 10 of a text file
show_file("path/to/your/file.txt"”, start = 5, end = 10)

Display all rows of a text file that contain the word "example”
show_file("path/to/your/file.txt"”, pattern = "example")

Print code lines within R code chunks
show_file("path/to/your/file.txt", chunk = TRUE)

Display the last 5 lines of a text file, ignoring missing lines at the end
show_file("path/to/your/file.txt", start = -5)

End(Not run)

submission_server Tutorial submission functions

Description

The following function was modified from Colin Rundel’s learnrhash package, available at https://github.com/rundel/learnrha
Note that when including these functions in a learnr Rmd document it is necessary that the server
function, submission_server(), be included in an R chunk where context="server".

Usage

submission_server()

submission_ui

Format

An object of class shiny. tag of length 3.

Value

No return value, called for side effects.

An object of class shiny.tag.

write_answers 11

Examples

if(interactive()){
submission_server()

}

if(interactive()){
submision_ui

}

write_answers Write tutorial answers to file

Description
Take a tutorial session, extract out all the submitted answers, and write out an html file with all of
those answers.

Usage

write_answers(file, session, is_test = FALSE)

Arguments
file Location to render answers to. Output file type determined by file suffix. Only
"html" is acceptable.
session Session object from Shiny with learnr.
is_test TRUE/FALSE depending on whether or not we are just testing the function. De-
fault is TRUE.
Details

We only keep track of the questions/exercises that the student has completed. The other obvious
approach is to keep all the questions/exercises and leave unanswered ones as NA. Not sure if that
approach is better, or even possible.

Examples

if(interactive()){
write_answers("getting-started_answers.html”, sess)

}

Index

x datasets
submission_server, 10

check_current_tutorial, 2
check_tutorial_defaults, 2

determine_code_chunk_name, 3
determine_exercise_number, 3

format_tutorial, 4
get_submissions_from_learnr_session, 4
knit_tutorials, 5

make_exercise, 5
make_no_answer (make_exercise), 5
make_yes_answer (make_exercise), 5

process_submissions, 6
return_tutorial_paths, 7
set_binary_only_in_r_profile, 8
set_rstudio_settings, 8
show_file, 9

submission_server, 10
submission_ui (submission_server), 10

write_answers, 11

12

	check_current_tutorial
	check_tutorial_defaults
	determine_code_chunk_name
	determine_exercise_number
	format_tutorial
	get_submissions_from_learnr_session
	knit_tutorials
	make_exercise
	process_submissions
	return_tutorial_paths
	set_binary_only_in_r_profile
	set_rstudio_settings
	show_file
	submission_server
	write_answers
	Index

