The aim of this tutorial is to provide a short introduction to the prioritizr R package. It is also intended to help conservation planners familiar the Marxan decision support tool (Ball et al. 2009) start using the package for their work.
Let’s load the packages and data used in this tutorial. Since this tutorial uses data from the prioritizrdata R package, please ensure that it is installed. The data used in this tutorial were obtained from the Introduction to Marxan course and the Australian Government’s National Vegetation Information System.
# load packages
library(prioritizrdata)
library(prioritizr)
library(sf)
library(terra)
library(vegan)
library(cluster)
# set seed for reproducibility
set.seed(500)
# load planning unit data
tas_pu <- get_tas_pu()
# load feature data
tas_features <- get_tas_features()
Let’s have a look at the planning unit data. The tas_pu
object contains planning units represented as spatial polygons (i.e., a sf::st_sf()
object). This object has three columns that denote the following information for each planning unit: a unique identifier (id
), unimproved land value (cost
), and current conservation status (locked_in
). Planning units that have at least half of their area overlapping with existing protected areas are denoted with a locked in TRUE
value, otherwise they are denoted with a value of FALSE
. We will also set the costs for existing protected areas to zero, so that existing protected areas aren’t included in the the cost of the prioritization.
## Simple feature collection with 1130 features and 4 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: 298809.6 ymin: 5167775 xmax: 613818.8 ymax: 5502544
## Projected CRS: WGS 84 / UTM zone 55S
## # A tibble: 1,130 × 5
## id cost locked_in locked_out geom
## <int> <dbl> <lgl> <lgl> <MULTIPOLYGON [m]>
## 1 1 60.2 FALSE TRUE (((328497 5497704, 326783.8 5500050, 326775…
## 2 2 19.9 FALSE FALSE (((307121.6 5490487, 305344.4 5492917, 3053…
## 3 3 59.7 FALSE TRUE (((321726.1 5492382, 320111 5494593, 320127…
## 4 4 32.4 FALSE FALSE (((304314.5 5494324, 304342.2 5494287, 3043…
## 5 5 26.2 FALSE FALSE (((314958.5 5487057, 312336 5490646, 312339…
## 6 6 51.3 FALSE FALSE (((327904.3 5491218, 326594.6 5493012, 3284…
## 7 7 32.3 FALSE FALSE (((308194.1 5481729, 306601.2 5483908, 3066…
## 8 8 38.4 FALSE FALSE (((322792.7 5483624, 319965.3 5487497, 3199…
## 9 9 3.55 FALSE FALSE (((334896.6 5490731, 335610.4 5492490, 3357…
## 10 10 1.83 FALSE FALSE (((356377.1 5487952, 353903.1 5487635, 3538…
## # ℹ 1,120 more rows
# set costs for existing protected areas to zero
tas_pu$cost <- tas_pu$cost * !tas_pu$locked_in
# plot map of planning unit costs
plot(st_as_sf(tas_pu[, "cost"]), main = "Planning unit costs")
# plot map of planning unit coverage by protected areas
plot(st_as_sf(tas_pu[, "locked_in"]), main = "Protected area coverage")
Now, let’s look at the conservation feature data. The tas_features
object describes the spatial distribution of the features. Specifically, the feature data are a multi-layer raster (i.e., a terra::rast()
object). Each layer corresponds to a different vegetation community. Within each layer, cells values denote the presence (using value of 1) or absence (using value of 0) of the vegetation community across the study area.
## class : SpatRaster
## dimensions : 398, 359, 33 (nrow, ncol, nlyr)
## resolution : 1000, 1000 (x, y)
## extent : 288801.7, 647801.7, 5142976, 5540976 (xmin, xmax, ymin, ymax)
## coord. ref. : WGS 84 / UTM zone 55S (EPSG:32755)
## source : tas_features.tif
## names : Banks~lands, Bould~marks, Calli~lands, Cool ~orest, Eucal~hyll), Eucal~torey, ...
## min values : 0, 0, 0, 0, 0, 0, ...
## max values : 1, 1, 1, 1, 1, 1, ...
Now we will formulate a conservation planing problem. To achieve this, we first specify which objects contain the planning unit and feature data (using the problem()
function). Next, we specify that we want to use the minimum set objective function (using the add_min_set_objective()
function). This objective function indicates that we wish to minimize the total cost of planning units selected by the prioritization. We then specify boundary penalties to reduce spatial fragmentation in the resulting prioritization (using the add_boundary_penalties()
function; see the Calibrating trade-offs vignette for details on calibrating the penalty value). We also specify representation targets to ensure the resulting prioritization provides adequate coverage of each vegetation community (using the add_relative_targets()
function). Specifically, we specify targets to ensure at least 17% of the spatial extent of each vegetation community (based on the Aichi Target 11). Additionally, we set constraints to ensure that planning units predominately covered by existing protected areas are selected by the prioritization (using the add_locked_in_constraints()
function). Finally, we specify that the prioritization should either select – or not select – planning units for prioritization (using the add_binary_decisions()
function).
# build problem
p1 <-
problem(tas_pu, tas_features, cost_column = "cost") %>%
add_min_set_objective() %>%
add_boundary_penalties(penalty = 0.005) %>%
add_relative_targets(0.17) %>%
add_locked_in_constraints("locked_in") %>%
add_binary_decisions()
# print problem
print(p1)
## A conservation problem (<ConservationProblem>)
## ├•data
## │├•features: "Banksia woodlands", … (33 total)
## │└•planning units:
## │ ├•data: <sftbl_dftbldata.frame> (1130 total)
## │ ├•costs: continuous values (between 0 and 61.9273)
## │ ├•extent: 298809.5764, 5167774.5993, 613818.7743, 5502543.7119 (xmin, ymin, xmax, ymax)
## │ └•CRS: WGS 84 / UTM zone 55S (projected)
## ├•formulation
## │├•objective: minimum set objective
## │├•penalties:
## ││└•1: boundary penalties (`penalty` = 0.005, `edge_factor` = 0.5, …)
## │├•targets: relative targets (between 0.17 and 0.17)
## │├•constraints:
## ││└•1: locked in constraints (257 planning units)
## │└•decisions: binary decision
## └•optimization
## ├•portfolio: default portfolio
## └•solver: gurobi solver (`gap` = 0.1, `time_limit` = 2147483647, `first_feasible` = FALSE, …)
## # ℹ Use `summary(...)` to see complete formulation.
We can now solve the problem formulation (p1
) to generate a prioritization (using the solve()
function). The prioritizr R package supports a range of different exact algorithm solvers, including Gurobi, IBM CPLEX, CBC, HiGHS, Rsymphony, and lpsymphony. Although there are benefits and limitations associated with each of these different solvers, they should return similar results. Note that you will need at least one solver installed on your system to generate prioritizations. Since we did not specify a solver when building the problem, the prioritizr R package will automatically select the best available solver installed. We recommend using the Gurobi solver if possible, and have used it for this tutorial (see the Gurobi Installation Guide vignette for installation instructions). After solving the problem, the prioritization will be stored in the solution_1
column of the s1
object.
## Set parameter Username
## Set parameter TimeLimit to value 2147483647
## Set parameter MIPGap to value 0.1
## Set parameter Presolve to value 2
## Set parameter Threads to value 1
## Academic license - for non-commercial use only - expires 2026-01-08
## Gurobi Optimizer version 11.0.0 build v11.0.0rc2 (linux64 - "Ubuntu 20.04.6 LTS")
##
## CPU model: AMD Ryzen Threadripper 3960X 24-Core Processor, instruction set [SSE2|AVX|AVX2]
## Thread count: 24 physical cores, 48 logical processors, using up to 1 threads
##
## Optimize a model with 6329 rows, 4278 columns and 20749 nonzeros
## Model fingerprint: 0x41e6f0a9
## Variable types: 0 continuous, 4278 integer (4278 binary)
## Coefficient statistics:
## Matrix range [2e-06, 6e+01]
## Objective range [5e-01, 2e+02]
## Bounds range [1e+00, 1e+00]
## RHS range [2e-01, 2e+03]
## Found heuristic solution: objective 28313.965155
## Found heuristic solution: objective 18343.093396
## Presolve removed 1909 rows and 1249 columns
## Presolve time: 0.05s
## Presolved: 4420 rows, 3029 columns, 11081 nonzeros
## Found heuristic solution: objective 15602.370843
## Variable types: 0 continuous, 3029 integer (3029 binary)
## Found heuristic solution: objective 14378.736293
## Root relaxation presolve removed 8 rows and 6 columns
## Root relaxation presolved: 4412 rows, 3023 columns, 11060 nonzeros
##
##
## Root relaxation: objective 9.520699e+03, 1296 iterations, 0.06 seconds (0.09 work units)
##
## Nodes | Current Node | Objective Bounds | Work
## Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
##
## 0 0 9520.69856 0 1115 14378.7363 9520.69856 33.8% - 0s
## H 0 0 12933.143362 9520.69856 26.4% - 0s
## H 0 0 12197.661425 9520.69856 21.9% - 0s
## H 0 0 11415.809096 9520.69856 16.6% - 0s
## H 0 0 11179.561369 9520.69856 14.8% - 0s
## 0 0 9615.33215 0 1144 11179.5614 9615.33215 14.0% - 0s
## H 0 0 10708.874738 9615.33215 10.2% - 0s
## 0 0 9630.86518 0 1113 10708.8747 9630.86518 10.1% - 0s
## 0 0 9630.94955 0 1057 10708.8747 9630.94955 10.1% - 0s
## 0 0 9633.39167 0 1052 10708.8747 9633.39167 10.0% - 0s
## 0 0 9633.39167 0 1052 10708.8747 9633.39167 10.0% - 0s
## 0 2 9633.57606 0 1052 10708.8747 9633.57606 10.0% - 0s
##
## Cutting planes:
## MIR: 2
## GUB cover: 1
## RLT: 5
##
## Explored 3 nodes (1811 simplex iterations) in 0.96 seconds (2.04 work units)
## Thread count was 1 (of 48 available processors)
##
## Solution count 9: 10708.9 11179.6 11415.8 ... 28314
##
## Optimal solution found (tolerance 1.00e-01)
## Best objective 1.070887473841e+04, best bound 9.657420841310e+03, gap 9.8185%
Let’s examine how well the vegetation communities are represented by existing protected areas and the prioritization.
# create column with existing protected areas
tas_pu$pa <- round(tas_pu$locked_in)
# calculate feature representation statistics based on existing protected areas
tc_pa <- eval_target_coverage_summary(p1, tas_pu[, "pa"])
print(tc_pa)
## # A tibble: 33 × 9
## feature met total_amount absolute_target absolute_held absolute_shortfall
## <chr> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 Banksia … TRUE 2.00 0.340 0.367 0
## 2 Boulders… TRUE 140. 23.9 65.5 0
## 3 Callitri… FALSE 6.00 1.02 0.487 0.533
## 4 Cool tem… TRUE 7257. 1234. 2992. 0
## 5 Eucalypt… TRUE 5699. 969. 1398. 0
## 6 Eucalypt… FALSE 9180. 1561. 1030. 531.
## 7 Eucalypt… TRUE 38.0 6.46 15.1 0
## 8 Eucalypt… FALSE 1908. 324. 189. 135.
## 9 Eucalypt… FALSE 388. 65.9 27.4 38.6
## 10 Eucalypt… TRUE 6145. 1045. 1449. 0
## # ℹ 23 more rows
## # ℹ 3 more variables: relative_target <dbl>, relative_held <dbl>,
## # relative_shortfall <dbl>
# calculate feature representation statistics based on the prioritization
tc_s1 <- eval_target_coverage_summary(p1, s1[, "solution_1"])
print(tc_s1)
## # A tibble: 33 × 9
## feature met total_amount absolute_target absolute_held absolute_shortfall
## <chr> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 Banksia … TRUE 2.00 0.340 0.367 0
## 2 Boulders… TRUE 140. 23.9 70.8 0
## 3 Callitri… TRUE 6.00 1.02 1.49 0
## 4 Cool tem… TRUE 7257. 1234. 3289. 0
## 5 Eucalypt… TRUE 5699. 969. 1759. 0
## 6 Eucalypt… TRUE 9180. 1561. 1738. 0
## 7 Eucalypt… TRUE 38.0 6.46 19.0 0
## 8 Eucalypt… TRUE 1908. 324. 325. 0
## 9 Eucalypt… TRUE 388. 65.9 72.8 0
## 10 Eucalypt… TRUE 6145. 1045. 2088. 0
## # ℹ 23 more rows
## # ℹ 3 more variables: relative_target <dbl>, relative_held <dbl>,
## # relative_shortfall <dbl>
# explore representation by existing protected areas
## calculate number of features adequately represented by existing protected
## areas
sum(tc_pa$met)
## [1] 18
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 3.163 18.363 23.827 39.649 93.002
## visualize representation (values show percent coverage)
hist(tc_pa$relative_held * 100,
main = "Feature representation by existing protected areas",
xlim = c(0, 100),
xlab = "Percent coverage of features (%)")
# explore representation by prioritization
## summarize representation (values show percent coverage)
summary(tc_s1$relative_held * 100)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 17.01 18.80 30.43 37.25 50.03 100.00
## [1] 33
## visualize representation (values show percent coverage)
hist(
tc_s1$relative_held * 100,
main = "Feature representation by prioritization",
xlim = c(0, 100),
xlab = "Percent coverage of features (%)"
)
We can see that representation of the vegetation communities by existing protected areas is remarkably poor. For example, many of the vegetation communities have nearly zero coverage by existing protected areas. In other words, are almost entirely absent from existing protected areas. We can also see that all vegetation communities have at least 17% coverage by the prioritization – meaning that it meets the representation targets for all of the features.
After generating the prioritization, we can examine the relative importance of planning units selected by the prioritization. This can be useful to identify critically important planning units for conservation – in other words, places that contain biodiversity features which cannot be represented anywhere else – and schedule implementation of the prioritization. To achieve this, we will use an incremental rank approach (Jung et al. 2021). Briefly, this approach involves generating incremental prioritizations with increasing budgets, wherein planning units selected in a previous increment are locked in to the following solution. Additionally, locked out constraints are used to ensure that only planning units selected in the original solution are available for selection. If you’re interested, other approaches for examining importance are also available (see ?importance
).
## Warning in matrix(compile(x)$lb(), ncol = n_z, nrow = n_pu): data length [4278]
## is not a sub-multiple or multiple of the number of rows [1130]
Conservation planning exercises often involve generating multiple different prioritizations. This can help decision makers consider different options, and provide starting points for building consensus among stakeholders. To generate a range of different prioritizations given the same problem formulation, we can use portfolio functions. Here we will use the gap portfolio to generate 1000 solutions that are within 20% of optimality. Please note that you will need to have the Gurobi solver installed to use this specific portfolio. If you don’t have access to Gurobi, you could try using the shuffle portfolio instead (using the add_shuffle_portfolio()
function).
# create new problem with a portfolio added to it
p2 <-
p1 %>%
add_gap_portfolio(number_solutions = 1000, pool_gap = 0.2)
# print problem
print(p2)
## A conservation problem (<ConservationProblem>)
## ├•data
## │├•features: "Banksia woodlands", … (33 total)
## │└•planning units:
## │ ├•data: <sftbl_dftbldata.frame> (1130 total)
## │ ├•costs: continuous values (between 0 and 61.9273)
## │ ├•extent: 298809.5764, 5167774.5993, 613818.7743, 5502543.7119 (xmin, ymin, xmax, ymax)
## │ └•CRS: WGS 84 / UTM zone 55S (projected)
## ├•formulation
## │├•objective: minimum set objective
## │├•penalties:
## ││└•1: boundary penalties (`penalty` = 0.005, `edge_factor` = 0.5, …)
## │├•targets: relative targets (between 0.17 and 0.17)
## │├•constraints:
## ││└•1: locked in constraints (257 planning units)
## │└•decisions: binary decision
## └•optimization
## ├•portfolio: gap portfolio (`number_solutions` = 1000, `pool_gap` = 0.2)
## └•solver: gurobi solver (`gap` = 0.1, `time_limit` = 2147483647, `first_feasible` = FALSE, …)
## # ℹ Use `summary(...)` to see complete formulation.
## Set parameter Username
## Set parameter TimeLimit to value 2147483647
## Set parameter MIPGap to value 0.1
## Set parameter Presolve to value 2
## Set parameter Threads to value 1
## Set parameter PoolSolutions to value 1000
## Set parameter PoolSearchMode to value 2
## Set parameter PoolGap to value 0.2
## Academic license - for non-commercial use only - expires 2026-01-08
## Gurobi Optimizer version 11.0.0 build v11.0.0rc2 (linux64 - "Ubuntu 20.04.6 LTS")
##
## CPU model: AMD Ryzen Threadripper 3960X 24-Core Processor, instruction set [SSE2|AVX|AVX2]
## Thread count: 24 physical cores, 48 logical processors, using up to 1 threads
##
## Optimize a model with 6329 rows, 4278 columns and 20749 nonzeros
## Model fingerprint: 0x41e6f0a9
## Variable types: 0 continuous, 4278 integer (4278 binary)
## Coefficient statistics:
## Matrix range [2e-06, 6e+01]
## Objective range [5e-01, 2e+02]
## Bounds range [1e+00, 1e+00]
## RHS range [2e-01, 2e+03]
## Found heuristic solution: objective 28313.965155
## Found heuristic solution: objective 18343.093396
## Presolve removed 1434 rows and 258 columns
## Presolve time: 0.02s
## Presolved: 4895 rows, 4020 columns, 12064 nonzeros
## Variable types: 0 continuous, 4020 integer (4020 binary)
## Found heuristic solution: objective 17265.739104
## Root relaxation presolved: 4895 rows, 4020 columns, 12064 nonzeros
##
##
## Root relaxation: objective 9.520699e+03, 1440 iterations, 0.06 seconds (0.10 work units)
##
## Nodes | Current Node | Objective Bounds | Work
## Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
##
## 0 0 9520.69856 0 1216 17265.7391 9520.69856 44.9% - 0s
## H 0 0 13545.245401 9520.69856 29.7% - 0s
## H 0 0 11984.549677 9520.69856 20.6% - 0s
## 0 0 9615.06739 0 1238 11984.5497 9615.06739 19.8% - 0s
## H 0 0 11241.247649 9615.06739 14.5% - 0s
## 0 0 9630.86518 0 1203 11241.2476 9630.86518 14.3% - 0s
## 0 0 9630.94955 0 1128 11241.2476 9630.94955 14.3% - 0s
## 0 0 9633.39167 0 1121 11241.2476 9633.39167 14.3% - 1s
## 0 0 9633.39167 0 1121 11241.2476 9633.39167 14.3% - 1s
## 0 2 9634.37501 0 1121 11241.2476 9634.37501 14.3% - 1s
## H 27 27 10636.935702 9634.37501 9.43% 115 1s
## H 104 104 10586.589018 9634.37501 8.99% 77.3 2s
## H 130 130 10537.625198 9634.37501 8.57% 72.8 2s
## H 392 392 10533.661238 9634.37501 8.54% 29.2 2s
## H 459 391 10237.356490 9634.37501 5.89% 25.3 2s
## H 466 396 10118.051471 9646.28141 4.66% 26.5 2s
## H 512 443 10085.285016 9646.28141 4.35% 31.8 3s
## H 514 1 10083.125371 9646.28141 4.33% 31.7 3s
## H 519 3 9920.1656226 9646.28141 2.76% 31.4 4s
## 593 75 - 74 9920.16562 9699.61249 2.22% 38.2 5s
## 2409 1690 10269.0591 43 786 9920.16562 9757.94512 1.64% 30.9 10s
##
## Cutting planes:
## Cover: 1
## MIR: 2
## GUB cover: 1
## RLT: 8
##
## Explored 3730 nodes (106446 simplex iterations) in 12.86 seconds (19.25 work units)
## Thread count was 1 (of 48 available processors)
##
## Solution count 1000: 9920.17 9944.84 9974.12 ... 10886.7
## No other solutions better than 10886.7
##
## Optimal solution found (tolerance 1.00e-01)
## Best objective 9.920165622579e+03, best bound 9.799222899385e+03, gap 1.2192%
## Simple feature collection with 1130 features and 1004 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: 298809.6 ymin: 5167775 xmax: 613818.8 ymax: 5502544
## Projected CRS: WGS 84 / UTM zone 55S
## # A tibble: 1,130 × 1,005
## id cost locked_in locked_out solution_1 solution_2 solution_3 solution_4
## <int> <dbl> <lgl> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 1 60.2 FALSE TRUE 0 0 0 0
## 2 2 19.9 FALSE FALSE 0 0 0 0
## 3 3 59.7 FALSE TRUE 0 0 0 0
## 4 4 32.4 FALSE FALSE 0 0 0 0
## 5 5 26.2 FALSE FALSE 0 0 0 0
## 6 6 51.3 FALSE FALSE 0 0 0 0
## 7 7 32.3 FALSE FALSE 0 0 0 0
## 8 8 38.4 FALSE FALSE 0 0 0 0
## 9 9 3.55 FALSE FALSE 0 0 0 0
## 10 10 1.83 FALSE FALSE 0 0 0 0
## # ℹ 1,120 more rows
## # ℹ 997 more variables: solution_5 <dbl>, solution_6 <dbl>, solution_7 <dbl>,
## # solution_8 <dbl>, solution_9 <dbl>, solution_10 <dbl>, solution_11 <dbl>,
## # solution_12 <dbl>, solution_13 <dbl>, solution_14 <dbl>, solution_15 <dbl>,
## # solution_16 <dbl>, solution_17 <dbl>, solution_18 <dbl>, solution_19 <dbl>,
## # solution_20 <dbl>, solution_21 <dbl>, solution_22 <dbl>, solution_23 <dbl>,
## # solution_24 <dbl>, solution_25 <dbl>, solution_26 <dbl>, …
After generating all these prioritizations, we now want some way to visualize them. Because it would be onerous to look at each and every prioritization individually, we will use statistical analyses to help us. We can visualize the differences between these different prioritizations – based on which planning units they selected – using a hierarchical cluster analysis (Harris et al. 2014).
# extract solutions
prt_results <- sf::st_drop_geometry(prt)
prt_results <- prt_results[, startsWith(names(prt_results), "solution_")]
# calculate pair-wise distances between different prioritizations for analysis
prt_dists <- vegan::vegdist(t(prt_results), method = "jaccard", binary = TRUE)
# run cluster analysis
prt_clust <- hclust(as.dist(prt_dists), method = "average")
# visualize clusters
opar <- par()
par(oma = c(0, 0, 0, 0), mar= c(0, 4.1, 1.5, 2.1))
plot(
prt_clust, labels = FALSE, sub = NA, xlab = "",
main = "Different prioritizations in portfolio"
)
suppressWarnings(par(opar))
We can see that there are approximately six main groups of prioritizations in the portfolio. To explore these different groups, let’s conduct another cluster analysis (i.e., a k-medoids analysis) to extract the most representative prioritization from each of these groups. In other words, we will run another statistical analysis to find the most central prioritization within each group.
# run k-medoids analysis
prt_med <- pam(prt_dists, k = 6)
# extract names of prioritizations that are most central for each group.
prt_med_names <- prt_med$medoids
print(prt_med_names)
## [1] "solution_126" "solution_279" "solution_441" "solution_87" "solution_586"
## [6] "solution_870"
# create a copy of prt and set values for locked in planning units to -1
# so we can easily visualize differences between prioritizations
prt2 <- prt[, prt_med_names]
prt2[which(tas_pu$locked_in > 0.5), prt_med_names] <- -1
# plot a map showing main different prioritizations
# dark grey: locked in planning units
# grey: planning units not selected
# green: selected planning units
plot(st_as_sf(prt2), pal = c("grey60", "grey90", "darkgreen"))
The prioritizr R package provides functionality to help Marxan users generate prioritizations. Specifically, it can import conservation planning data prepared for Marxan, and can generate prioritizations using a similar problem formulation as Marxan (based on Beyer et al. 2016). Indeed, the problem formulation presented earlier in this vignette is very similar to that used by Marxan. The key difference is that the problem formulation we specified earlier uses “hard constraints” for feature representation, and Marxan uses “soft constraints” for feature representation. This means that prioritization we generated earlier was mathematically guaranteed to reach the targets for all features. However, if we used Marxan to generate the prioritization, then we could have produced a prioritization that would fail to reach targets (depending the Species Penalty Factors used to generate the prioritization). In addition to these differences in terms problem formulation, the prioritizr R package uses exact algorithms – instead of the simulated annealing algorithm – which ensures that we obtain prioritizations that are near optimal.
Here we will show the prioritizr R package can import Marxan data and generate a prioritization. To begin with, let’s import a conservation planning data prepared for Marxan.
# import data
## planning unit data
pu_path <- system.file("extdata/marxan/input/pu.dat", package = "prioritizr")
pu_data <- read.csv(pu_path, header = TRUE, stringsAsFactors = FALSE)
print(head(pu_data))
## id cost status xloc yloc
## 1 3 0.000 0 1116623 -4493479
## 2 30 7527.275 3 1110623 -4496943
## 3 56 37349.075 0 1092623 -4500408
## 4 58 16959.021 0 1116623 -4500408
## 5 84 34220.256 0 1098623 -4503872
## 6 85 178907.584 0 1110623 -4503872
## feature data
spec_path <- system.file(
"extdata/marxan/input/spec.dat", package = "prioritizr"
)
spec_data <- read.csv(spec_path, header = TRUE, stringsAsFactors = FALSE)
print(head(spec_data))
## id prop spf name
## 1 10 0.3 1 bird1
## 2 11 0.3 1 nvis2
## 3 12 0.3 1 nvis8
## 4 13 0.3 1 nvis9
## 5 14 0.3 1 nvis14
## 6 15 0.3 1 nvis20
## amount of each feature within each planning unit data
puvspr_path <- system.file(
"extdata/marxan/input/puvspr.dat", package = "prioritizr"
)
puvspr_data <- read.csv(puvspr_path, header = TRUE, stringsAsFactors = FALSE)
print(head(puvspr_data))
## species pu amount
## 1 26 56 120.344884
## 2 26 58 45.167010
## 3 26 84 68.047375
## 4 26 85 9.735624
## 5 26 86 7.803476
## 6 26 111 478.327417
## boundary data
bound_path <- system.file(
"extdata/marxan/input/bound.dat", package = "prioritizr"
)
bound_data <- read.table(bound_path, header = TRUE, stringsAsFactors = FALSE)
print(head(bound_data))
## id1 id2 boundary
## 1 3 3 16000
## 2 3 30 4000
## 3 3 58 4000
## 4 30 30 12000
## 5 30 58 4000
## 6 30 85 4000
After importing the data, we can now generate a prioritization based on the Marxan problem formulation (using the marxan_problem()
function). Please note that this function does not generate prioritizations using Marxan. Instead, it uses the data to create an optimization problem formulation similar to Marxan – using hard constraints instead of soft constraints – and uses an exact algorithm solver to generate a prioritization.
# create problem
p3 <- marxan_problem(
pu_data, spec_data, puvspr_data, bound_data, blm = 0.0005
)
# print problem
print(p3)
## A conservation problem (<ConservationProblem>)
## ├•data
## │├•features: "bird1", "nvis2", "nvis8", "nvis9", "nvis14", "nvis20", … (17 total)
## │└•planning units:
## │ ├•data: <data.frame> (1751 total)
## │ ├•costs: continuous values (between 0 and 415692.1938)
## │ ├•extent: NA
## │ └•CRS: NA
## ├•formulation
## │├•objective: minimum set objective
## │├•penalties:
## ││└•1: boundary penalties (`penalty` = 5e-04, `edge_factor` = 1, …)
## │├•targets: relative targets (between 0.3 and 0.3)
## │├•constraints:
## ││├•1: locked in constraints (317 planning units)
## ││└•2: locked out constraints (1 planning units)
## │└•decisions: binary decision
## └•optimization
## ├•portfolio: default portfolio
## └•solver: gurobi solver (`gap` = 0.1, `time_limit` = 2147483647, `first_feasible` = FALSE, …)
## # ℹ Use `summary(...)` to see complete formulation.
## Set parameter Username
## Set parameter TimeLimit to value 2147483647
## Set parameter MIPGap to value 0.1
## Set parameter Presolve to value 2
## Set parameter Threads to value 1
## Academic license - for non-commercial use only - expires 2026-01-08
## Gurobi Optimizer version 11.0.0 build v11.0.0rc2 (linux64 - "Ubuntu 20.04.6 LTS")
##
## CPU model: AMD Ryzen Threadripper 3960X 24-Core Processor, instruction set [SSE2|AVX|AVX2]
## Thread count: 24 physical cores, 48 logical processors, using up to 1 threads
##
## Optimize a model with 10075 rows, 6780 columns and 24778 nonzeros
## Model fingerprint: 0x37d7a0a1
## Variable types: 0 continuous, 6780 integer (6780 binary)
## Coefficient statistics:
## Matrix range [5e-05, 4e+03]
## Objective range [4e+00, 4e+05]
## Bounds range [1e+00, 1e+00]
## RHS range [5e+03, 3e+05]
## Found heuristic solution: objective 1.221202e+08
## Presolve removed 4707 rows and 3103 columns
## Presolve time: 0.05s
## Presolved: 5368 rows, 3677 columns, 12704 nonzeros
## Variable types: 0 continuous, 3677 integer (3677 binary)
## Found heuristic solution: objective 1.009944e+08
## Root relaxation presolved: 5368 rows, 3677 columns, 12704 nonzeros
##
##
## Root relaxation: interrupted, 2 iterations, 0.01 seconds (0.01 work units)
##
## Nodes | Current Node | Objective Bounds | Work
## Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
##
## 0 0 - 0 1.0099e+08 9.1033e+07 9.86% - 0s
##
## Explored 1 nodes (2 simplex iterations) in 0.06 seconds (0.09 work units)
## Thread count was 1 (of 48 available processors)
##
## Solution count 2: 1.00994e+08 1.2212e+08
##
## Optimal solution found (tolerance 1.00e-01)
## Best objective 1.009944489031e+08, best bound 9.103307331724e+07, gap 9.8633%
## id cost status xloc yloc locked_in locked_out solution_1
## 1 3 0.000 0 1116623 -4493479 FALSE FALSE 0
## 2 30 7527.275 3 1110623 -4496943 FALSE TRUE 0
## 3 56 37349.075 0 1092623 -4500408 FALSE FALSE 0
## 4 58 16959.021 0 1116623 -4500408 FALSE FALSE 0
## 5 84 34220.256 0 1098623 -4503872 FALSE FALSE 0
## 6 85 178907.584 0 1110623 -4503872 FALSE FALSE 0
This tutorial shows how the prioritizr R package can be used to build a conservation problem, generate a prioritization, and evaluate it. Although we explored just a few functions, the package provides many different functions so that you can build and custom-tailor conservation planning problems to suit your needs. To learn more about the package, please see the package vignettes for an overview of the package, instructions for installing the Gurobi optimization suite, benchmarks comparing the performance of different solvers, and a record of publications that have cited the package. In addition to this tutorial, the package also provides tutorials on incorporating connectivity into prioritizations, calibrating trade-offs between different criteria (e.g., total cost and spatial fragmentation), and creating prioritizations that have multiple management zones or management actions.
Ball, I., Possingham, H. & Watts, M.E. (2009). Marxan and relatives: Software for spatial conservation prioritisation. Spatial Conservation Prioritisation: Quantitative Methods & Computational Tools (eds A. Moilanen, K.A. Wilson & H. Possingham), pp. 185–189. Oxford University Press, Oxford, UK.
Beyer, H.L., Dujardin, Y., Watts, M.E. & Possingham, H.P. (2016). Solving conservation planning problems with integer linear programming. Ecological Modelling, 328, 14–22.
Harris, L.R., Watts, M.E., Nel, R., Schoeman, D.S. & Possingham, H.P. (2014). Using multivariate statistics to explore trade-offs among spatial planning scenarios (P. Armsworth, Ed.). Journal of Applied Ecology, 51, 1504–1514.
Jung, M., Arnell, A., Lamo, X. de, García-Rangel, S., Lewis, M., Mark, J., Merow, C., Miles, L., Ondo, I., Pironon, S., Ravilious, C., Rivers, M., Schepaschenko, D., Tallowin, O., Soesbergen, A. van, Govaerts, R., Boyle, B.L., Enquist, B.J., Feng, X., Gallagher, R., Maitner, B., Meiri, S., Mulligan, M., Ofer, G., Roll, U., Hanson, J.O., Jetz, W., Di Marco, M., McGowan, J., Rinnan, D.S., Sachs, J.D., Lesiv, M., Adams, V.M., Andrew, S.C., Burger, J.R., Hannah, L., Marquet, P.A., McCarthy, J.K., Morueta-Holme, N., Newman, E.A., Park, D.S., Roehrdanz, P.R., Svenning, J.-C., Violle, C., Wieringa, J.J., Wynne, G., Fritz, S., Strassburg, B.B.N., Obersteiner, M., Kapos, V., Burgess, N., Schmidt-Traub, G. & Visconti, P. (2021). Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology & Evolution, 5, 1499–1509.