
Package ‘ordinal’
August 19, 2024

Type Package

Title Regression Models for Ordinal Data

Version 2023.12-4.1

Date 2023-12-04

LazyData true

ByteCompile yes

Depends R (>= 2.13.0), stats, methods

Imports ucminf, MASS, Matrix, numDeriv, nlme

Suggests lme4, nnet, xtable, testthat (>= 0.8), tools

Description Implementation of cumulative link (mixed) models also known
as ordered regression models, proportional odds models, proportional
hazards models for grouped survival times and ordered logit/probit/...
models. Estimation is via maximum likelihood and mixed models are fitted
with the Laplace approximation and adaptive Gauss-Hermite quadrature.
Multiple random effect terms are allowed and they may be nested, crossed or
partially nested/crossed. Restrictions of symmetry and equidistance can be
imposed on the thresholds (cut-points/intercepts). Standard model
methods are available (summary, anova, drop-methods, step,
confint, predict etc.) in addition to profile methods and slice
methods for visualizing the likelihood function and checking
convergence.

License GPL (>= 2)

NeedsCompilation yes

URL https://github.com/runehaubo/ordinal

BugReports https://github.com/runehaubo/ordinal/issues

Author Rune Haubo Bojesen Christensen [aut, cre]

Maintainer Rune Haubo Bojesen Christensen <rune.haubo@gmail.com>

Repository CRAN

Date/Publication 2024-08-19 09:00:59 UTC

1

https://github.com/runehaubo/ordinal
https://github.com/runehaubo/ordinal/issues

2 ordinal-package

Contents
ordinal-package . 2
anova.clm . 4
clm . 5
clm.control . 10
clm.fit . 11
clm2 . 13
clm2.control . 18
clmm . 19
clmm.control . 22
clmm2 . 23
clmm2.control . 26
condVar . 28
confint . 29
convergence . 32
drop.coef . 33
gfun . 34
gumbel . 35
income . 37
lgamma . 38
nominal_test . 40
predict.clm . 42
profile.clmm2 . 44
slice . 46
soup . 47
VarCorr . 49
wine . 50

Index 52

ordinal-package Regression Models for Ordinal Data via Cumulative Link (Mixed)
Models

Description

This package facilitates analysis of ordinal (ordered categorical data) via cumulative link models
(CLMs) and cumulative link mixed models (CLMMs). Robust and efficient computational methods
gives speedy and accurate estimation. A wide range of methods for model fits aids the data analysis.

Details

Package: ordinal
Type: Package
License: GPL (>= 2)
LazyLoad: yes

ordinal-package 3

This package implements cumualtive link models and cumulative link models with normally dis-
tributed random effects, denoted cumulative link mixed (effects) models. Cumulative link models
are also known as ordered regression models, proportional odds models, proportional hazards mod-
els for grouped survival times and ordered logit/probit/... models.

Cumulative link models are fitted with clm and the main features are:

• A range of standard link functions are available.

• In addition to the standard location (additive) effects, scale (multiplicative) effects are also
allowed.

• nominal effects are allowed for any subset of the predictors — these effects are also known as
partial proportional odds effects when using the logit link.

• Restrictions can be imposed on the thresholds/cut-points, e.g., symmetry or equidistance.

• A (modified) Newton-Raphson algorithm provides the maximum likelihood estimates of the
parameters. The estimation scheme is robust, fast and accurate.

• Rank-deficient designs are identified and unidentified coefficients exposed in print and summary
methods as with glm.

• A suite of standard methods are available including anova, add/drop-methods, step, profile,
confint.

• A slice method facilitates illustration of the likelihood function and a convergence method
summarizes the accuracy of the model estimation.

• The predict method can predict probabilities, response class-predictions and cumulative
probabilities, and it provides standard errors and confidence intervals for the predictions.

Cumulative link mixed models are fitted with clmm and the main features are:

• Any number of random effect terms can be included.

• The syntax for the model formula resembles that of lmer from the lme4 package.

• Nested random effects, crossed random effects and partially nested/crossed random effects are
allowed.

• Estimation is via maximum likelihood using the Laplace approximation or adaptive Gauss-
Hermite quadrature (one random effect).

• Vector-valued and correlated random effects such as random slopes (random coefficient mod-
els) are fitted with the Laplace approximation.

• Estimation employs sparse matrix methods from the Matrix package.

• During model fitting a Newton-Raphson algorithm updates the conditional modes of the ran-
dom effects a large number of times. The likelihood function is optimized with a general
purpose optimizer.

A major update of the package in August 2011 introduced new and improved implementations of
clm and clmm. The old implementations are available with clm2 and clmm2. At the time of writing
there is functionality in clm2 and clmm2 not yet available in clm and clmm. This includes flexible
link functions (log-gamma and Aranda-Ordaz links) and a profile method for random effect variance
parameters in CLMMs. The new implementations are expected to take over the old implementations
at some point, hence the latter will eventually be deprecated and defunct.

4 anova.clm

Author(s)

Rune Haubo B Christensen

Maintainer: Rune Haubo B Christensen <rune.haubo@gmail.com>

Examples

A simple cumulative link model:
fm1 <- clm(rating ~ contact + temp, data=wine)
summary(fm1)

A simple cumulative link mixed model:
fmm1 <- clmm(rating ~ contact + temp + (1|judge), data=wine)
summary(fmm1)

anova.clm ANODE Tables and Likelihood ratio test of cumulative link models

Description

Type I, II, and III analysis of deviance (ANODE) tables for cumulative link models and comparison
of cumulative link models with likelihood ratio tests. Models may differ by terms in location, scale
and nominal formulae, in link, threshold function.

Usage

S3 method for class 'clm'
anova(object, ..., type = c("I", "II", "III", "1", "2", "3"))

Arguments

object a clm object.

... optionally one or more additional clm objects.

type the type of hypothesis test if anova is called with a single model; ignored if
more than one model is passed to the method.

Details

The ANODE table returned when anova is called with a single model apply only to terms in
formula, that is, terms in nominal and scale are ignored.

Value

An analysis of deviance table based on Wald chi-square test if called with a single model and a
comparison of models with likelihood ratio tests if called with more than one model.

clm 5

Author(s)

Rune Haubo B Christensen

See Also

clm

Examples

Analysis of deviance tables with Wald chi-square tests:
fm <- clm(rating ~ temp * contact, scale=~contact, data=wine)
anova(fm, type="I")
anova(fm, type="II")
anova(fm, type="III")

options(contrasts = c("contr.treatment", "contr.poly"))
m1 <- clm2(SURENESS ~ PROD, scale = ~PROD, data = soup,

link = "logistic")

anova
anova(m1, update(m1, scale = ~.-PROD))
mN1 <- clm2(SURENESS ~ 1, nominal = ~PROD, data = soup,

link = "logistic")
anova(m1, mN1)
anova(m1, update(m1, scale = ~.-PROD), mN1)

Fit model from polr example:
if(require(MASS)) {

fm1 <- clm2(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
anova(fm1, update(fm1, scale =~ Cont))

}

clm Cumulative Link Models

Description

Fits cumulative link models (CLMs) such as the propotional odds model. The model allows for
various link functions and structured thresholds that restricts the thresholds or cut-points to be e.g.,
equidistant or symmetrically arranged around the central threshold(s). Nominal effects (partial
proportional odds with the logit link) are also allowed. A modified Newton algorithm is used to
optimize the likelihood function.

Usage

clm(formula, scale, nominal, data, weights, start, subset, doFit = TRUE,
na.action, contrasts, model = TRUE, control=list(),
link = c("logit", "probit", "cloglog", "loglog", "cauchit",

6 clm

"Aranda-Ordaz", "log-gamma"),
threshold = c("flexible", "symmetric", "symmetric2", "equidistant"), ...)

Arguments

formula a formula expression as for regression models, of the form response ~ predictors.
The response should be a factor (preferably an ordered factor), which will be in-
terpreted as an ordinal response with levels ordered as in the factor. The model
must have an intercept: attempts to remove one will lead to a warning and will
be ignored. An offset may be used. See the documentation of formula for other
details.

scale an optional formula expression, of the form ~ predictors, i.e. with an empty
left hand side. An offset may be used. Variables included here will have multi-
plicative effects and can be interpreted as effects on the scale (or dispersion) of
a latent distribution.

nominal an optional formula of the form ~ predictors, i.e. with an empty left hand side.
The effects of the predictors in this formula are assumed to be nominal rather
than ordinal - this corresponds to the so-called partial proportional odds (with
the logit link).

data an optional data frame in which to interpret the variables occurring in the for-
mulas.

weights optional case weights in fitting. Defaults to 1. Negative weights are not allowed.

start initial values for the parameters in the format c(alpha, beta, zeta), where
alpha are the threshold parameters (adjusted for potential nominal effects),
beta are the regression parameters and zeta are the scale parameters.

subset expression saying which subset of the rows of the data should be used in the fit.
All observations are included by default.

doFit logical for whether the model should be fitted or the model environment should
be returned.

na.action a function to filter missing data. Applies to terms in all three formulae.

contrasts a list of contrasts to be used for some or all of the factors appearing as variables
in the model formula.

model logical for whether the model frame should be part of the returned object.

control a list of control parameters passed on to clm.control.

link link function, i.e., the type of location-scale distribution assumed for the latent
distribution. The default "logit" link gives the proportional odds model.

threshold specifies a potential structure for the thresholds (cut-points). "flexible" pro-
vides the standard unstructured thresholds, "symmetric" restricts the distance
between the thresholds to be symmetric around the central one or two thresholds
for odd or equal numbers or thresholds respectively, "symmetric2" restricts the
latent mean in the reference group to zero; this means that the central threshold
(even no. response levels) is zero or that the two central thresholds are equal
apart from their sign (uneven no. response levels), and "equidistant" restricts
the distance between consecutive thresholds to be of the same size.

... additional arguments are passed on to clm.control.

clm 7

Details

This is a new (as of August 2011) improved implementation of CLMs. The old implementation is
available in clm2, but will probably be removed at some point.

There are methods for the standard model-fitting functions, including summary, anova, model.frame,
model.matrix, drop1, dropterm, step, stepAIC, extractAIC, AIC, coef, nobs, profile, confint,
vcov and slice.

Value

If doFit = FALSE the result is an environment representing the model ready to be optimized. If
doFit = TRUE the result is an object of class "clm" with the components listed below.

Note that some components are only present if scale and nominal are used.

aliased list of length 3 or less with components alpha, beta and zeta each being logical
vectors containing alias information for the parameters of the same names.

alpha a vector of threshold parameters.

alpha.mat (where relevant) a table (data.frame) of threshold parameters where each row
corresponds to an effect in the nominal formula.

beta (where relevant) a vector of regression parameters.

call the mathed call.

coefficients a vector of coefficients of the form c(alpha, beta, zeta)

cond.H condition number of the Hessian matrix at the optimum (i.e. the ratio of the
largest to the smallest eigenvalue).

contrasts (where relevant) the contrasts used for the formula part of the model.

control list of control parameters as generated by clm.control.

convergence convergence code where 0 indicates successful convergence and negative values
indicate convergence failure; 1 indicates successful convergence to a non-unique
optimum.

edf the estimated degrees of freedom, i.e., the number of parameters in the model
fit.

fitted.values the fitted probabilities.

gradient a vector of gradients for the coefficients at the estimated optimum.

Hessian the Hessian matrix for the parameters at the estimated optimum.

info a table of basic model information for printing.

link character, the link function used.

logLik the value of the log-likelihood at the estimated optimum.

maxGradient the maximum absolute gradient, i.e., max(abs(gradient)).

model if requested (the default), the model.frame containing variables from formula,
scale and nominal parts.

n the number of observations counted as nrow(X), where X is the design matrix.

na.action (where relevant) information returned by model.frame on the special handling
of NAs.

8 clm

nobs the number of observations counted as sum(weights).

nom.contrasts (where relevant) the contrasts used for the nominal part of the model.

nom.terms (where relevant) the terms object for the nominal part.

nom.xlevels (where relevant) a record of the levels of the factors used in fitting for the
nominal part.

start the parameter values at which the optimization has started. An attribute start.iter
gives the number of iterations to obtain starting values for models where scale
is specified or where the cauchit link is chosen.

S.contrasts (where relevant) the contrasts used for the scale part of the model.

S.terms (where relevant) the terms object for the scale part.

S.xlevels (where relevant) a record of the levels of the factors used in fitting for the scale
part.

terms the terms object for the formula part.

Theta (where relevant) a table (data.frame) of thresholds for all combinations of lev-
els of factors in the nominal formula.

threshold character, the threshold structure used.

tJac the transpose of the Jacobian for the threshold structure.

xlevels (where relevant) a record of the levels of the factors used in fitting for the
formula part.

y.levels the levels of the response variable after removing levels for which all weights
are zero.

zeta (where relevant) a vector of scale regression parameters.

Author(s)

Rune Haubo B Christensen

Examples

fm1 <- clm(rating ~ temp * contact, data = wine)
fm1 ## print method
summary(fm1)
fm2 <- update(fm1, ~.-temp:contact)
anova(fm1, fm2)

drop1(fm1, test = "Chi")
add1(fm1, ~.+judge, test = "Chi")

fm2 <- step(fm1)
summary(fm2)

coef(fm1)
vcov(fm1)
AIC(fm1)
extractAIC(fm1)
logLik(fm1)

clm 9

fitted(fm1)

confint(fm1) ## type = "profile"
confint(fm1, type = "Wald")
pr1 <- profile(fm1)
confint(pr1)

plotting the profiles:
par(mfrow = c(2, 2))
plot(pr1, root = TRUE) ## check for linearity
par(mfrow = c(2, 2))
plot(pr1)
par(mfrow = c(2, 2))
plot(pr1, approx = TRUE)
par(mfrow = c(2, 2))
plot(pr1, Log = TRUE)
par(mfrow = c(2, 2))
plot(pr1, Log = TRUE, relative = FALSE)

other link functions:
fm4.lgt <- update(fm1, link = "logit") ## default
fm4.prt <- update(fm1, link = "probit")
fm4.ll <- update(fm1, link = "loglog")
fm4.cll <- update(fm1, link = "cloglog")
fm4.cct <- update(fm1, link = "cauchit")
anova(fm4.lgt, fm4.prt, fm4.ll, fm4.cll, fm4.cct)

structured thresholds:
fm5 <- update(fm1, threshold = "symmetric")
fm6 <- update(fm1, threshold = "equidistant")
anova(fm1, fm5, fm6)

the slice methods:
slice.fm1 <- slice(fm1)
par(mfrow = c(3, 3))
plot(slice.fm1)
see more at '?slice.clm'

Another example:
fm.soup <- clm(SURENESS ~ PRODID, data = soup)
summary(fm.soup)

if(require(MASS)) { ## dropterm, addterm, stepAIC, housing
fm1 <- clm(rating ~ temp * contact, data = wine)
dropterm(fm1, test = "Chi")
addterm(fm1, ~.+judge, test = "Chi")
fm3 <- stepAIC(fm1)
summary(fm3)

Example from MASS::polr:
fm1 <- clm(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
summary(fm1)

}

10 clm.control

clm.control Set control parameters for cumulative link models

Description

Set control parameters for cumulative link models

Usage

clm.control(method = c("Newton", "model.frame", "design", "ucminf", "nlminb",
"optim"),
sign.location = c("negative", "positive"),
sign.nominal = c("positive", "negative"),
..., trace = 0L,
maxIter = 100L, gradTol = 1e-06, maxLineIter = 15L, relTol = 1e-6,
tol = sqrt(.Machine$double.eps), maxModIter = 5L,
convergence = c("warn", "silent", "stop", "message"))

Arguments

method "Newton" fits the model by maximum likelihood and "model.frame" cause
clm to return the model.frame, "design" causes clm to return a list of design
matrices etc. that can be used with clm.fit. ucminf, nlminb and optim refer
to general purpose optimizers.

sign.location change sign of the location part of the model.

sign.nominal change sign of the nominal part of the model.

trace numerical, if > 0 information is printed about and during the optimization pro-
cess. Defaults to 0.

maxIter the maximum number of Newton-Raphson iterations. Defaults to 100.

gradTol the maximum absolute gradient; defaults to 1e-6.

maxLineIter the maximum number of step halfings allowed if a Newton(-Raphson) step over
shoots. Defaults to 15.

relTol relative convergence tolerence: relative change in the parameter estimates be-
tween Newton iterations. Defaults to 1e-6.

tol numerical tolerence on eigenvalues to determine negative-definiteness of Hes-
sian. If the Hessian of a model fit is negative definite, the fitting algorithm did
not converge. If the Hessian is singular, the fitting algorithm did converge albeit
not to a unique optimum, so one or more parameters are not uniquely determined
even though the log-likelihood value is.

maxModIter the maximum allowable number of consecutive iterations where the Newton step
needs to be modified to be a decent direction. Defaults to 5.

convergence action to take if the fitting algorithm did not converge.

... control arguments parsed on to ucminf, nlminb or optim.

clm.fit 11

Value

a list of control parameters.

Author(s)

Rune Haubo B Christensen

See Also

clm

clm.fit Fit Cumulative Link Models

Description

A direct fitter of cumulative link models.

Usage

clm.fit(y, ...)

Default S3 method:
clm.fit(y, ...)

S3 method for class 'factor'
clm.fit(y, X, S, N, weights = rep(1, nrow(X)),

offset = rep(0, nrow(X)), S.offset = rep(0, nrow(X)),
control = list(), start, doFit=TRUE,
link = c("logit", "probit", "cloglog", "loglog", "cauchit",

"Aranda-Ordaz", "log-gamma"),
threshold = c("flexible", "symmetric", "symmetric2", "equidistant"),
...)

Arguments

y for the default method a list of model components. For the factor method the
response variable; a factor, preferably and ordered factor.

X, S, N optional design matrices for the regression parameters, scale parameters and
nominal parameters respectively.

weights optional case weights.

offset an optional offset.

S.offset an optional offset for the scale part of the model.

control a list of control parameters, optionally a call to clm.control.

12 clm.fit

start an optional list of starting values of the form c(alpha, beta, zeta) for the
thresholds and nominal effects (alpha), regression parameters (beta) and scale
parameters (zeta).

doFit logical for whether the model should be fit or the model environment should be
returned.

link the link function.

threshold the threshold structure, see further at clm.

... currently not used.

Details

This function does almost the same thing that clm does: it fits a cumulative link model. The main
differences are that clm.fit does not setup design matrices from formulae and only does minimal
post processing after parameter estimation.

Compared to clm, clm.fit does little to warn the user of any problems with data or model. How-
ever, clm.fit will attempt to identify column rank defecient designs. Any unidentified parameters
are indicated in the aliased component of the fit.

clm.fit.factor is not able to check if all thresholds are increasing when nominal effects are
specified since it needs access to the terms object for the nominal model. If the terms object for the
nominal model (nom.terms) is included in y, the default method is able to chech if all thresholds
are increasing.

Value

A list with the following components: aliased, alpha, coefficients, cond.H, convergence,
df.residual, edf, fitted.values, gradient, Hessian, logLik, maxGradient, message, n,
niter, nobs, tJac, vcov and optionally beta, zeta These components are documented in clm.

Author(s)

Rune Haubo B Christensen

See Also

clm

Examples

A simple example:
fm1 <- clm(rating ~ contact + temp, data=wine)
summary(fm1)
get the model frame containing y and X:
mf1 <- update(fm1, method="design")
names(mf1)
res <- clm.fit(mf1$y, mf1$X) ## invoking the factor method
stopifnot(all.equal(coef(res), coef(fm1)))
names(res)

Fitting with the default method:

clm2 13

mf1$control$method <- "Newton"
res2 <- clm.fit(mf1)
stopifnot(all.equal(coef(res2), coef(fm1)))

clm2 Cumulative link models

Description

A new improved implementation of CLMs is available in clm.

Fits cumulative link models with an additive model for the location and a multiplicative model for
the scale. The function allows for structured thresholds. A popular special case of a CLM is the
proportional odds model. In addition to the standard link functions, two flexible link functions,
"Arandar-Ordaz" and "log-gamma" are available, where an extra link function parameter provides
additional flexibility. A subset of the predictors can be allowed to have nominal rather than ordinal
effects. This has been termed "partial proportional odds" when the link is the logistic.

Usage

clm2(location, scale, nominal, data, weights, start, subset,
na.action, contrasts, Hess = TRUE, model,
link = c("logistic", "probit", "cloglog", "loglog",
"cauchit", "Aranda-Ordaz", "log-gamma"), lambda,
doFit = TRUE, control,
threshold = c("flexible", "symmetric", "equidistant"), ...)

Arguments

location a formula expression as for regression models, of the form response ~ predictors.
The response should be a factor (preferably an ordered factor), which will be in-
terpreted as an ordinal response with levels ordered as in the factor. The model
must have an intercept: attempts to remove one will lead to a warning and will
be ignored. An offset may be used. See the documentation of formula for other
details.

scale a optional formula expression as for the location part, of the form ~ predictors,
i.e. with an empty left hand side. An offset may be used. See the documentation
of formula for other details.

nominal an optional formula of the form ~ predictors, i.e. with an empty left hand side.
The effects of the predictors in this formula are assumed to nominal.

data an optional data frame in which to interpret the variables occurring in the for-
mulas.

weights optional case weights in fitting. Defaults to 1.

start initial values for the parameters in the format c(alpha, beta, log(zeta),
lambda).

14 clm2

subset expression saying which subset of the rows of the data should be used in the fit.
All observations are included by default.

na.action a function to filter missing data. Applies to terms in all three formulae.

contrasts a list of contrasts to be used for some or all of the factors appearing as variables
in the model formula.

Hess logical for whether the Hessian (the inverse of the observed information matrix)
should be computed. Use Hess = TRUE if you intend to call summary or vcov on
the fit and Hess = FALSE in all other instances to save computing time. The ar-
gument is ignored if method = "Newton" where the Hessian is always computed
and returned. Defaults to TRUE.

model logical for whether the model frames should be part of the returned object.

link link function, i.e. the type of location-scale distribution assumed for the latent
distribution. The Aranda-Ordaz and log-gamma links add additional flexibil-
ity with a link function parameter, lambda. The Aranda-Ordaz link (Aranda-
Ordaz, 1983) equals the logistic link, when lambda = 1 and approaches the
loglog link when lambda approaches zero. The log-gamma link (Genter and
Farewell, 1985) equals the loglog link when lambda = 1, the probit link when
lambda = 0 and the cloglog link when lambda = -1.

lambda numerical scalar: the link function parameter. Used in combination with link
Aranda-Ordaz or log-gamma and otherwise ignored. If lambda is specified,
the model is estimated with lambda fixed at this value and otherwise lambda
is estimated by ML. For Aranda-Ordaz lambda has to be positive; > 1e-5 for
numerical reasons.

doFit logical for whether the model should be fit or the model environment should be
returned.

control a call to clm2.control.

threshold specifies a potential structure for the thresholds (cut-points). "flexible" pro-
vides the standard unstructured thresholds, "symmetric" restricts the distance
between the thresholds to be symmetric around the central one or two thresh-
olds for odd or equal numbers or thresholds respectively, and "equidistant"
restricts the distance between consecutive thresholds to the same value.

... additional arguments are passed on to clm2.control and possibly further on
to the optimizer, which can lead to surprising error or warning messages when
mistyping arguments etc.

Details

There are methods for the standard model-fitting functions, including summary, vcov, predict,
anova, logLik, profile, plot.profile, confint, update, dropterm, addterm, and an extractAIC
method.

The design of the implementation is inspired by an idea proposed by Douglas Bates in the talk
"Exploiting sparsity in model matrices" presented at the DSC conference in Copenhagen, July 14
2009. Basically an environment is set up with all the information needed to optimize the likeli-
hood function. Extractor functions are then used to get the value of likelihood at current or given
parameter values and to extract current values of the parameters. All computations are performed

clm2 15

inside the environment and relevant variables are updated during the fitting process. After optimizer
termination relevant variables are extracted from the environment and the remaining are discarded.

Some aspects of clm2, for instance, how starting values are obtained, and of the associated methods
are inspired by polr from package MASS.

Value

If doFit = FALSE the result is an environment representing the model ready to be optimized. If
doFit = TRUE the result is an object of class "clm2" with the following components:

beta the parameter estimates of the location part.

zeta the parameter estimates of the scale part on the log scale; the scale parameter
estimates on the original scale are given by exp(zeta).

Alpha vector or matrix of the threshold parameters.

Theta vector or matrix of the thresholds.

xi vector of threshold parameters, which, given a threshold function (e.g. "equidistant"),
and possible nominal effects define the class boundaries, Theta.

lambda the value of lambda if lambda is supplied or estimated, otherwise missing.

coefficients the coefficients of the intercepts (theta), the location (beta), the scale (zeta),
and the link function parameter (lambda).

df.residual the number of residual degrees of freedoms, calculated using the weights.

fitted.values vector of fitted values for each observation. An observation here is each of the
scalar elements of the multinomial table and not a multinomial vector.

convergence TRUE if the gradient based convergence criterion is met and FALSE otherwise.

gradient vector of gradients for all the parameters at termination of the optimizer.

optRes list with results from the optimizer. The contents of the list depends on the
choice of optimizer.

logLik the log likelihood of the model at optimizer termination.

Hessian if the model was fitted with Hess = TRUE, this is the Hessian matrix of the pa-
rameters at the optimum.

scale model.frame for the scale model.

location model.frame for the location model.

nominal model.frame for the nominal model.

edf the (effective) number of degrees of freedom used by the model.

start the starting values.

convTol convergence tolerance for the maximum absolute gradient of the parameters at
termination of the optimizer.

method character, the optimizer.

y the response variable.

lev the names of the levels of the response variable.

nobs the (effective) number of observations, calculated as the sum of the weights.

16 clm2

threshold character, the threshold function used in the model.

estimLambda 1 if lambda is estimated in one of the flexible link functions and 0 otherwise.

link character, the link function used in the model.

call the matched call.

contrasts contrasts applied to terms in location and scale models.

na.action the function used to filter missing data.

Author(s)

Rune Haubo B Christensen

References

Agresti, A. (2002) Categorical Data Analysis. Second edition. Wiley.

Aranda-Ordaz, F. J. (1983) An Extension of the Proportional-Hazards Model for Grouped Data.
Biometrics, 39, 109-117.

Genter, F. C. and Farewell, V. T. (1985) Goodness-of-link testing in ordinal regression models. The
Canadian Journal of Statistics, 13(1), 37-44.

Christensen, R. H. B., Cleaver, G. and Brockhoff, P. B. (2011) Statistical and Thurstonian models
for the A-not A protocol with and without sureness. Food Quality and Preference, 22, pp. 542-549.

Examples

options(contrasts = c("contr.treatment", "contr.poly"))

A tabular data set:
(tab26 <- with(soup, table("Product" = PROD, "Response" = SURENESS)))
dimnames(tab26)[[2]] <- c("Sure", "Not Sure", "Guess", "Guess", "Not Sure", "Sure")
dat26 <- expand.grid(sureness = as.factor(1:6), prod = c("Ref", "Test"))
dat26$wghts <- c(t(tab26))

m1 <- clm2(sureness ~ prod, scale = ~prod, data = dat26,
weights = wghts, link = "logistic")

print, summary, vcov, logLik, AIC:
m1
summary(m1)
vcov(m1)
logLik(m1)
AIC(m1)
coef(m1)
coef(summary(m1))

link functions:
m2 <- update(m1, link = "probit")
m3 <- update(m1, link = "cloglog")
m4 <- update(m1, link = "loglog")
m5 <- update(m1, link = "cauchit", start = coef(m1))
m6 <- update(m1, link = "Aranda-Ordaz", lambda = 1)

clm2 17

m7 <- update(m1, link = "Aranda-Ordaz")
m8 <- update(m1, link = "log-gamma", lambda = 1)
m9 <- update(m1, link = "log-gamma")

nominal effects:
mN1 <- clm2(sureness ~ 1, nominal = ~ prod, data = dat26,

weights = wghts, link = "logistic")
anova(m1, mN1)

optimizer / method:
update(m1, scale = ~ 1, method = "Newton")
update(m1, scale = ~ 1, method = "nlminb")
update(m1, scale = ~ 1, method = "optim")

threshold functions
mT1 <- update(m1, threshold = "symmetric")
mT2 <- update(m1, threshold = "equidistant")
anova(m1, mT1, mT2)

Extend example from polr in package MASS:
Fit model from polr example:
if(require(MASS)) {

fm1 <- clm2(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
fm1
summary(fm1)
With probit link:
summary(update(fm1, link = "probit"))
Allow scale to depend on Cont-variable
summary(fm2 <- update(fm1, scale =~ Cont))
anova(fm1, fm2)
which seems to improve the fit

}

#################################
It is possible to fit multinomial models (i.e. with nominal
effects) as the following example shows:
if(require(nnet)) {

(hous1.mu <- multinom(Sat ~ 1, weights = Freq, data = housing))
(hous1.clm <- clm2(Sat ~ 1, weights = Freq, data = housing))

It is the same likelihood:
all.equal(logLik(hous1.mu), logLik(hous1.clm))

and the same fitted values:
fitHous.mu <-

t(fitted(hous1.mu))[t(col(fitted(hous1.mu)) == unclass(housing$Sat))]
all.equal(fitted(hous1.clm), fitHous.mu)

The coefficients of multinom can be retrieved from the clm2-object
by:
Pi <- diff(c(0, plogis(hous1.clm$xi), 1))
log(Pi[2:3]/Pi[1])

18 clm2.control

A larger model with explanatory variables:
(hous.mu <- multinom(Sat ~ Infl + Type + Cont, weights = Freq, data = housing))
(hous.clm <- clm2(Sat ~ 1, nominal = ~ Infl + Type + Cont, weights = Freq,

data = housing))

Almost the same likelihood:
all.equal(logLik(hous.mu), logLik(hous.clm))

And almost the same fitted values:
fitHous.mu <-

t(fitted(hous.mu))[t(col(fitted(hous.mu)) == unclass(housing$Sat))]
all.equal(fitted(hous.clm), fitHous.mu)
all.equal(round(fitted(hous.clm), 5), round(fitHous.mu), 5)

}

clm2.control Set control parameters for cumulative link models

Description

Set control parameters for cumulative link models

Usage

clm2.control(method = c("ucminf", "Newton", "nlminb", "optim",
"model.frame"), ..., convTol = 1e-4,
trace = 0, maxIter = 100, gradTol = 1e-5,
maxLineIter = 10)

Arguments

method the optimizer used to maximize the likelihood function. "Newton" only works
for models without scale, structured thresholds and flexible link functions, but
is considerably faster than the other optimizers when applicable. model.frame
simply returns a list of model frames with the location, scale and nominal model
frames. "optim" uses the "BFGS" method.

... control arguments passed on to the chosen optimizer; see ucminf, optim, and
nlminb for details.

convTol convergence criterion on the size of the maximum absolute gradient.
trace numerical, if > 0 information is printed about and during the optimization pro-

cess. Defaults to 0.
maxIter the maximum number of Newton-Raphson iterations. Defaults to 100.
gradTol the maximum absolute gradient. This is the termination criterion and defaults to

1e-5.
maxLineIter the maximum number of step halfings allowed if a Newton(-Raphson) step over

shoots. Defaults to 10.

clmm 19

Value

a list of control parameters.

Author(s)

Rune Haubo B Christensen

See Also

clm2

clmm Cumulative Link Mixed Models

Description

Fits Cumulative Link Mixed Models with one or more random effects via the Laplace approximation
or quadrature methods

Usage

clmm(formula, data, weights, start, subset, na.action, contrasts, Hess =
TRUE, model = TRUE, link = c("logit", "probit", "cloglog", "loglog",
"cauchit"), doFit = TRUE, control = list(), nAGQ = 1L,
threshold = c("flexible", "symmetric", "symmetric2", "equidistant"), ...)

Arguments

formula a two-sided linear formula object describing the fixed-effects part of the model,
with the response on the left of a ~ operator and the terms, separated by + op-
erators, on the right. The vertical bar character "|" separates an expression for a
model matrix and a grouping factor.

data an optional data frame in which to interpret the variables occurring in the for-
mula.

weights optional case weights in fitting. Defaults to 1.

start optional initial values for the parameters in the format c(alpha, beta, tau),
where alpha are the threshold parameters, beta are the fixed regression param-
eters and tau are variance parameters for the random effects on the log scale.

subset expression saying which subset of the rows of the data should be used in the fit.
All observations are included by default.

na.action a function to filter missing data.

contrasts a list of contrasts to be used for some or all of the factors appearing as variables
in the model formula.

20 clmm

Hess logical for whether the Hessian (the inverse of the observed information matrix)
should be computed. Use Hess = TRUE if you intend to call summary or vcov on
the fit and Hess = FALSE in all other instances to save computing time.

model logical for whether the model frames should be part of the returned object.

link link function, i.e. the type of location-scale distribution assumed for the latent
distribution. The default "logit" link gives the proportional odds mixed model.

doFit logical for whether the model should be fit or the model environment should be
returned.

control a call to clmm.control

nAGQ integer; the number of quadrature points to use in the adaptive Gauss-Hermite
quadrature approximation to the likelihood function. The default (1) gives the
Laplace approximation. Higher values generally provide higher precision at the
expense of longer computation times, and values between 5 and 10 generally
provide accurate maximum likelihood estimates. Negative values give the non-
adaptive Gauss-Hermite quadrature approximation, which is generally faster but
less accurate than the adaptive version. See the references for further details.
Quadrature methods are only available with a single random effects term; the
Laplace approximation is always available.

threshold specifies a potential structure for the thresholds (cut-points). "flexible" pro-
vides the standard unstructured thresholds, "symmetric" restricts the distance
between the thresholds to be symmetric around the central one or two thresholds
for odd or equal numbers or thresholds respectively, "symmetric2" restricts the
latent mean in the reference group to zero; this means that the central threshold
(even no. response levels) is zero or that the two central thresholds are equal
apart from their sign (uneven no. response levels), and "equidistant" restricts
the distance between consecutive thresholds to be of the same size.

... additional arguments are passed on to clm.control.

Details

This is a new (as of August 2011) improved implementation of CLMMs. The old implementation is
available in clmm2. Some features are not yet available in clmm; for instance scale effects, nominal
effects and flexible link functions are currently only available in clmm2. clmm is expected to take
over clmm2 at some point.

There are standard print, summary and anova methods implemented for "clmm" objects.

Value

a list containing

alpha threshold parameters.

beta fixed effect regression parameters.

stDev standard deviation of the random effect terms.

tau log(stDev) - the scale at which the log-likelihood function is optimized.

coefficients the estimated model parameters = c(alpha, beta, tau).

clmm 21

control List of control parameters as generated by clm.control.

Hessian Hessian of the model coefficients.

edf the estimated degrees of freedom used by the model = length(coefficients).

nobs sum(weights).

n length(y).

fitted.values fitted values evaluated with the random effects at their conditional modes.

df.residual residual degrees of freedom; length(y) - sum(weights)

tJac Jacobian of the threshold function corresponding to the mapping from standard
flexible thresholds to those used in the model.

terms the terms object for the fixed effects.

contrasts contrasts applied to the fixed model terms.

na.action the function used to filter missing data.

call the matched call.

logLik value of the log-likelihood function for the model at the optimum.

Niter number of Newton iterations in the inner loop update of the conditional modes
of the random effects.

optRes list of results from the optimizer.

ranef list of the conditional modes of the random effects.

condVar list of the conditional variance of the random effects at their conditional modes.

Author(s)

Rune Haubo B Christensen

Examples

Cumulative link model with one random term:
fmm1 <- clmm(rating ~ temp + contact + (1|judge), data = wine)
summary(fmm1)

Not run:
May take a couple of seconds to run this.

Cumulative link mixed model with two random terms:
mm1 <- clmm(SURENESS ~ PROD + (1|RESP) + (1|RESP:PROD), data = soup,

link = "probit", threshold = "equidistant")
mm1
summary(mm1)

test random effect:
mm2 <- clmm(SURENESS ~ PROD + (1|RESP), data = soup,

link = "probit", threshold = "equidistant")
anova(mm1, mm2)

End(Not run)

22 clmm.control

clmm.control Set control parameters for cumulative link mixed models

Description

Set control parameters for cumulative link mixed models

Usage

clmm.control(method = c("nlminb", "ucminf", "model.frame"), ..., trace = 0,
maxIter = 50, gradTol = 1e-4, maxLineIter = 50, useMatrix = FALSE,
innerCtrl = c("warnOnly", "noWarn", "giveError"),
checkRanef = c("warn", "error", "message"))

Arguments

method the optimizer used to maximize the marginal likelihood function.

... control arguments passed on to the optimizer; see ucminf for details. ucminf
for details.

trace numerical, if > 0 information is printed about and during the outer optimization
process, if < 0 information is also printed about the inner optimization process.
Defaults to 0.

maxIter the maximum number of Newton updates of the inner optimization. 50.

gradTol the maximum absolute gradient of the inner optimization.

maxLineIter the maximum number of step halfings allowed if a Newton(-Raphson) step over
shoots during the inner optimization.

useMatrix if TRUE, a general implementation of the Laplace approximation using the Matrix
package is used, while if FALSE (default), a C implementation of the Laplace
approximation valid only for models with a single random effects term is used
when possible. TRUE is not valid for models fitted with quadrature methods.

innerCtrl the use of warnings/errors if the inner optimization fails to converge.

checkRanef the use of message/warning/error if there are more random effects than observa-
tions.

Value

a list of control parameters

Author(s)

Rune Haubo B Christensen

See Also

clmm

clmm2 23

clmm2 Cumulative link mixed models

Description

Fits cumulative link mixed models, i.e. cumulative link models with random effects via the Laplace
approximation or the standard and the adaptive Gauss-Hermite quadrature approximation. The
functionality in clm2 is also implemented here. Currently only a single random term is allowed in
the location-part of the model.

A new implementation is available in clmm that allows for more than one random effect.

Usage

clmm2(location, scale, nominal, random, data, weights, start, subset,
na.action, contrasts, Hess = FALSE, model = TRUE, sdFixed,
link = c("logistic", "probit", "cloglog", "loglog",
"cauchit", "Aranda-Ordaz", "log-gamma"), lambda,
doFit = TRUE, control, nAGQ = 1,
threshold = c("flexible", "symmetric", "equidistant"), ...)

Arguments

location as in clm2.

scale as in clm2.

nominal as in clm2.

random a factor for the random effects in the location-part of the model.

data as in clm2.

weights as in clm2.

start initial values for the parameters in the format c(alpha, beta, log(zeta),
lambda, log(stDev)) where stDev is the standard deviation of the random
effects.

subset as in clm2.

na.action as in clm2.

contrasts as in clm2.

Hess logical for whether the Hessian (the inverse of the observed information matrix)
should be computed. Use Hess = TRUE if you intend to call summary or vcov on
the fit and Hess = FALSE in all other instances to save computing time.

model as in clm2.

sdFixed If sdFixed is specified (a positive scalar), a model is fitted where the standard
deviation for the random term is fixed at the value of sdFixed. If sdFixed is left
unspecified, the standard deviation of the random term is estimated from data.

link as in clm2.

24 clmm2

lambda as in clm2.

doFit as in clm2 although it can also be one of c("no", "R" "C"), where "R" use the
R-implementation for fitting, "C" (default) use C-implementation for fitting and
"no" behaves as FALSE and returns the environment.

control a call to clmm2.control.

threshold as in clm2.

nAGQ the number of quadrature points to be used in the adaptive Gauss-Hermite quadra-
ture approximation to the marginal likelihood. Defaults to 1 which leads to the
Laplace approximation. An odd number of quadrature points is encouraged and
3, 5 or 7 are usually enough to achive high precision. Negative values give the
standard, i.e. non-adaptive Gauss-Hermite quadrature.

... additional arguments are passed on to clm2.control and possibly further on
to the optimizer, which can lead to surprising error or warning messages when
mistyping arguments etc.

Details

There are methods for the standard model-fitting functions, including summary, vcov, profile,
plot.profile, confint, anova, logLik, predict and an extractAIC method.

A Newton scheme is used to obtain the conditional modes of the random effects for Laplace and
AGQ approximations, and a non-linear optimization is performed over the fixed parameter set to
get the maximum likelihood estimates. The Newton scheme uses the observed Hessian rather than
the expected as is done in e.g. glmer, so results from the Laplace approximation for binomial fits
should in general be more precise - particularly for other links than the "logistic".

Core parts of the function are implemented in C-code for speed.

The function calls clm2 to up an environment and to get starting values.

Value

If doFit = FALSE the result is an environment representing the model ready to be optimized. If
doFit = TRUE the result is an object of class "clmm2" with the following components:

stDev the standard deviation of the random effects.

Niter the total number of iterations in the Newton updates of the conditional modes of
the random effects.

grFac the grouping factor defining the random effects.

nAGQ the number of quadrature points used in the adaptive Gauss-Hermite Quadrature
approximation to the marginal likelihood.

ranef the conditional modes of the random effects, sometimes referred to as "random
effect estimates".

condVar the conditional variances of the random effects at their conditional modes.

beta the parameter estimates of the location part.

zeta the parameter estimates of the scale part on the log scale; the scale parameter
estimates on the original scale are given by exp(zeta).

clmm2 25

Alpha vector or matrix of the threshold parameters.

Theta vector or matrix of the thresholds.

xi vector of threshold parameters, which, given a threshold function (e.g. "equidistant"),
and possible nominal effects define the class boundaries, Theta.

lambda the value of lambda if lambda is supplied or estimated, otherwise missing.

coefficients the coefficients of the intercepts (theta), the location (beta), the scale (zeta),
and the link function parameter (lambda).

df.residual the number of residual degrees of freedoms, calculated using the weights.

fitted.values vector of fitted values conditional on the values of the random effects. Use
predict to get the fitted values for a random effect of zero. An observation
here is taken to be each of the scalar elements of the multinomial table and not
a multinomial vector.

convergence TRUE if the optimizer terminates wihtout error and FALSE otherwise.

gradient vector of gradients for the unit-variance random effects at their conditional modes.

optRes list with results from the optimizer. The contents of the list depends on the
choice of optimizer.

logLik the log likelihood of the model at optimizer termination.

Hessian if the model was fitted with Hess = TRUE, this is the Hessian matrix of the pa-
rameters at the optimum.

scale model.frame for the scale model.

location model.frame for the location model.

nominal model.frame for the nominal model.

edf the (effective) number of degrees of freedom used by the model.

start the starting values.

method character, the optimizer.

y the response variable.

lev the names of the levels of the response variable.

nobs the (effective) number of observations, calculated as the sum of the weights.

threshold character, the threshold function used in the model.

estimLambda 1 if lambda is estimated in one of the flexible link functions and 0 otherwise.

link character, the link function used in the model.

call the matched call.

contrasts contrasts applied to terms in location and scale models.

na.action the function used to filter missing data.

Author(s)

Rune Haubo B Christensen

References

Agresti, A. (2002) Categorical Data Analysis. Second edition. Wiley.

26 clmm2.control

Examples

options(contrasts = c("contr.treatment", "contr.poly"))

More manageable data set:
dat <- subset(soup, as.numeric(as.character(RESP)) <= 24)
dat$RESP <- dat$RESP[drop=TRUE]

m1 <- clmm2(SURENESS ~ PROD, random = RESP, data = dat, link="probit",
Hess = TRUE, method="ucminf", threshold = "symmetric")

m1
summary(m1)
logLik(m1)
vcov(m1)
extractAIC(m1)
anova(m1, update(m1, location = SURENESS ~ 1, Hess = FALSE))
anova(m1, update(m1, random = NULL))

Use adaptive Gauss-Hermite quadrature rather than the Laplace
approximation:
update(m1, Hess = FALSE, nAGQ = 3)

Use standard Gauss-Hermite quadrature:
update(m1, Hess = FALSE, nAGQ = -7)

##
Binomial example with the cbpp data from the lme4-package:
if(require(lme4)) {

cbpp2 <- rbind(cbpp[,-(2:3)], cbpp[,-(2:3)])
cbpp2 <- within(cbpp2, {

incidence <- as.factor(rep(0:1, each=nrow(cbpp)))
freq <- with(cbpp, c(incidence, size - incidence))

})

Fit with Laplace approximation:
fm1 <- clmm2(incidence ~ period, random = herd, weights = freq,

data = cbpp2, Hess = 1)
summary(fm1)

Fit with the adaptive Gauss-Hermite quadrature approximation:
fm2 <- clmm2(incidence ~ period, random = herd, weights = freq,

data = cbpp2, Hess = 1, nAGQ = 7)
summary(fm2)

}

clmm2.control Set control parameters for cumulative link mixed models

clmm2.control 27

Description

Set control parameters for cumulative link mixed models

Usage

clmm2.control(method = c("ucminf", "nlminb", "model.frame"), ...,
trace = 0, maxIter = 50, gradTol = 1e-4,
maxLineIter = 50,
innerCtrl = c("warnOnly", "noWarn", "giveError"))

Arguments

method the optimizer used to maximize the marginal likelihood function.

... control arguments passed on to the chosen optimizer; see ucminf, optim, and
nlminb for details.

trace numerical, if > 0 information is printed about and during the outer optimization
process, if < 0 information is also printed about the inner optimization process.
Defaults to 0.

maxIter the maximum number of Newton updates of the inner optimization. 50.

gradTol the maximum absolute gradient of the inner optimization.

maxLineIter the maximum number of step halfings allowed if a Newton(-Raphson) step over
shoots during the inner optimization.

innerCtrl the use of warnings/errors if the inner optimization fails to converge.

Details

When the default optimizer, ucminf is used, the default values of that optimizers control options
are changed to grtol = 1e-5 and grad = "central".

Value

a list of control parameters.

Author(s)

Rune Haubo B Christensen

See Also

clmm2

28 condVar

condVar Extract conditional modes and conditional variances from clmm ob-
jects

Description

The ranef function extracts the conditional modes of the random effects from a clmm object. That
is, the modes of the distributions for the random effects given the observed data and estimated model
parameters. In a Bayesian language they are posterior modes.

The conditional variances are computed from the second order derivatives of the conditional distri-
bution of the random effects. Note that these variances are computed at a fixed value of the model
parameters and thus do not take the uncertainty of the latter into account.

Usage

condVar(object, ...)

S3 method for class 'clmm'
ranef(object, condVar=FALSE, ...)

S3 method for class 'clmm'
condVar(object, ...)

Arguments

object a clmm object.

condVar an optional logical argument indicating of conditional variances should be added
as attributes to the conditional modes.

... currently not used by the clmm methods.

Details

The ranef method returns a list of data.frames; one for each distinct grouping factor. Each
data.frame has as many rows as there are levels for that grouping factor and as many columns as
there are random effects for each level. For example a model can contain a random intercept (one
column) or a random intercept and a random slope (two columns) for the same grouping factor.

If conditional variances are requested, they are returned in the same structure as the conditional
modes (random effect estimates/predictions).

Value

The ranef method returns a list of data.frames with the random effects predictions/estimates
computed as conditional modes. If condVar = TRUE a data.frame with the conditional variances is
stored as an attribute on each data.frame with conditional modes.

confint 29

The condVar method returns a list of data.frames with the conditional variances. It is a conve-
nience function that simply computes the conditional modes and variances, then extracts and returns
only the latter.

Author(s)

Rune Haubo B Christensen

Examples

fm1 <- clmm(rating ~ contact + temp + (1|judge), data=wine)

Extract random effect estimates/conditional modes:
re <- ranef(fm1, condVar=TRUE)

Get conditional variances:
attr(re$judge, "condVar")
Alternatively:
condVar(fm1)

confint Confidence intervals and profile likelihoods for parameters in cumu-
lative link models

Description

Computes confidence intervals from the profiled likelihood for one or more parameters in a cumu-
lative link model, or plots the profile likelihood.

Usage

S3 method for class 'clm'
confint(object, parm, level = 0.95,

type = c("profile", "Wald"), trace = FALSE, ...)

S3 method for class 'profile.clm'
confint(object, parm = seq_len(nprofiles),

level = 0.95, ...)

S3 method for class 'clm'
profile(fitted, which.beta = seq_len(nbeta),

which.zeta = seq_len(nzeta), alpha = 0.001,
max.steps = 50, nsteps = 8, trace = FALSE, step.warn = 5,
control = list(), ...)

S3 method for class 'profile.clm'
plot(x, which.par = seq_len(nprofiles),

30 confint

level = c(0.95, 0.99), Log = FALSE, relative = TRUE, root =
FALSE, fig = TRUE, approx = root, n = 1e3,
ask = prod(par("mfcol")) < length(which.par) && dev.interactive(),
..., ylim = NULL)

Arguments

object, fitted, x
a fitted clm object or a profile.clm object.

parm, which.par, which.beta, which.zeta
a numeric or character vector indicating which regression coefficients should
be profiled. By default all coefficients are profiled. Ignored for confint.clm
where all parameters are considered.

level the confidence level. For the plot method a vector of levels for which horizontal
lines should be drawn.

type the type of confidence interval.
trace if trace is TRUE or positive, information about progress is printed.
Log should the profile likelihood be plotted on the log-scale?
relative should the relative or the absolute likelihood be plotted?
root should the (approximately linear) likelihood root statistic be plotted?
approx should the Gaussian or quadratic approximation to the (log) likelihood be in-

cluded?
fig should the profile likelihood be plotted?
ask logical; if TRUE, the user is asked before each plot, see par(ask=.).
n the no. points used in the spline interpolation of the profile likelihood.
ylim overrules default y-limits on the plot of the profile likelihood.
alpha the likelihood is profiled in the 100*(1-alpha)% confidence region as determined

by the profile likelihood.
control a list of control parameters for clm. Possibly use clm.control to set these.
max.steps the maximum number of profiling steps in each direction for each parameter.
nsteps the (approximate) number of steps to take in each direction of the profile for

each parameter. The step length is determined accordingly assuming a quadratic
approximation to the log-likelihood function. The actual number of steps will
often be close to nsteps, but will deviate when the log-likelihood functions is
irregular.

step.warn a warning is issued if the number of steps in each direction (up or down) for
a parameter is less than step.warn. If few steps are taken, the profile will be
unreliable and derived confidence intervals will be inaccurate.

... additional arguments to be parsed on to methods.

Details

These confint methods call the appropriate profile method, then finds the confidence intervals by
interpolation of the profile traces. If the profile object is already available, this should be used as
the main argument rather than the fitted model object itself.

confint 31

Value

confint: A matrix with columns giving lower and upper confidence limits for each parameter.
These will be labelled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and 97.5%).

plot.profile.clm invisibly returns the profile object, i.e., a list of data.frames with an lroot
component for the likelihood root statistic and a matrix par.vals with values of the parameters.

Author(s)

Rune Haubo B Christensen

See Also

profile and confint

Examples

Accurate profile likelihood confidence intervals compared to the
conventional Wald intervals:
fm1 <- clm(rating ~ temp * contact, data = wine)
confint(fm1) ## type = "profile"
confint(fm1, type = "Wald")
pr1 <- profile(fm1)
confint(pr1)

plotting the profiles:
par(mfrow = c(2, 2))
plot(pr1, root = TRUE) ## check for linearity
par(mfrow = c(2, 2))
plot(pr1)
par(mfrow = c(2, 2))
plot(pr1, approx = TRUE)
par(mfrow = c(2, 2))
plot(pr1, Log = TRUE)
par(mfrow = c(2, 2))
plot(pr1, Log = TRUE, relative = FALSE)
Not likely to be useful but allowed for completeness:
par(mfrow = c(2, 2))
plot(pr1, Log = FALSE, relative = FALSE)

Example from polr in package MASS:
Fit model from polr example:
if(require(MASS)) {

fm1 <- clm(Sat ~ Infl + Type + Cont, weights = Freq,
data = housing)

pr1 <- profile(fm1)
confint(pr1)
par(mfrow=c(2,2))
plot(pr1)

}

32 convergence

convergence Check convergence of cumulative link models

Description

Check the accuracy of the parameter estimates of cumulative link models. The number of correct
decimals and number of significant digits is given for the maximum likelihood estimates of the
parameters in a cumulative link model fitted with clm.

Usage

convergence(object, ...)

S3 method for class 'clm'
convergence(object, digits = max(3, getOption("digits") - 3),

tol = sqrt(.Machine$double.eps), ...)

Arguments

object for the clm method an object of class "clm", i.e., the result of a call to clm.

digits the number of digits in the printed table.

tol numerical tolerence to judge if the Hessian is positive definite from its smallest
eigenvalue.

... arguments to a from methods. Not used by the clm method.

Details

The number of correct decimals is defined as...

The number of significant digits is defined as ...

The number of correct decimals and the number of significant digits are determined from the nu-
merical errors in the parameter estimates. The numerical errors are determined from the Method
Independent Error Theorem (Elden et al, 2004) and is based on the Newton step evaluated at con-
vergence.

Value

Convergence information. In particular a table where the Error column gives the numerical error in
the parameter estimates. These numbers express how far the parameter estimates in the fitted model
are from the true maximum likelihood estimates for this model. The Cor.Dec gives the number of
correct decimals with which the the parameters are determined and the Sig.Dig gives the number
of significant digits with which the parameters are determined.

The number denoted logLik.error is the error in the value of log-likelihood in the fitted model
at the parameter values of that fit. An accurate determination of the log-likelihood is essential for
accurate likelihood ratio tests in model comparison.

drop.coef 33

Author(s)

Rune Haubo B Christensen

References

Elden, L., Wittmeyer-Koch, L. and Nielsen, H. B. (2004) Introduction to Numerical Computation
— analysis and Matlab illustrations. Studentliteratur.

Examples

Simple model:
fm1 <- clm(rating ~ contact + temp, data=wine)
summary(fm1)
convergence(fm1)

drop.coef Ensure Full Rank Design Matrix

Description

Coefficients (columns) are dropped from a design matrix to ensure that it has full rank.

Usage

drop.coef(X, silent = FALSE)

Arguments

X a design matrix, e.g., the result of model.matrix possibly of less than full
column rank, i.e., with redundant parameters. Works for ncol(X) >= 0 and
nrow(X) >= 0.

silent should a message not be issued if X is column rank deficient?

Details

Redundant columns of the design matrix are identified with the LINPACK implementation of the
qr decomposition and removed. The returned design matrix will have qr(X)$rank columns.

Value

The design matrix X without redundant columns.

Author(s)

Rune Haubo B Christensen

34 gfun

See Also

qr and lm

Examples

X <- model.matrix(~ PRODID * DAY, data = soup)
ncol(X)
newX <- drop.coef(X)
ncol(newX)

Essentially this is being computed:
qr.X <- qr(X, tol = 1e-7, LAPACK = FALSE)
newX <- X[, qr.X$pivot[1:qr.X$rank], drop = FALSE]
is newX of full column rank?
ncol(newX) == qr(newX)$rank
the number of columns being dropped:
ncol(X) - ncol(newX)

gfun Gradients of common densities

Description

Gradients of common density functions in their standard forms, i.e., with zero location (mean) and
unit scale. These are implemented in C for speed and care is taken that the correct results are
provided for the argument being NA, NaN, Inf, -Inf or just extremely small or large.

Usage

gnorm(x)

glogis(x)

gcauchy(x)

Arguments

x numeric vector of quantiles.

Details

The gradients are given by:

• gnorm: If f(x) is the normal density with mean 0 and spread 1, then the gradient is

f ′(x) = −xf(x)

gumbel 35

• glogis: If f(x) is the logistic density with mean 0 and scale 1, then the gradient is

f ′(x) = 2 exp(−x)2(1 + exp(−x))−3 − exp(−x)(1 + exp(−x))−2

• pcauchy: If f(x) = [π(1 + x2)2]−1 is the cauchy density with mean 0 and scale 1, then the
gradient is

f ′(x) = −2x[π(1 + x2)2]−1

These gradients are used in the Newton-Raphson algorithms in fitting cumulative link models with
clm and cumulative link mixed models with clmm.

Value

a numeric vector of gradients.

Author(s)

Rune Haubo B Christensen

See Also

Gradients of densities are also implemented for the extreme value distribtion (gumbel) and the the
log-gamma distribution (log-gamma).

Examples

x <- -5:5
gnorm(x)
glogis(x)
gcauchy(x)

gumbel The Gumbel Distribution

Description

Density, distribution function, quantile function, random generation, and gradient of density of the
extreme value (maximum and minimum) distributions. The Gumbel distribution is also known as
the extreme value maximum distribution, the double-exponential distribution and the log-Weibull
distribution.

36 gumbel

Usage

dgumbel(x, location = 0, scale = 1, log = FALSE, max = TRUE)

pgumbel(q, location = 0, scale = 1, lower.tail = TRUE, max = TRUE)

qgumbel(p, location = 0, scale = 1, lower.tail = TRUE, max = TRUE)

rgumbel(n, location = 0, scale = 1, max = TRUE)

ggumbel(x, max = TRUE)

Arguments

x, q numeric vector of quantiles.
p vector of probabilities.
n number of observations.
location numeric scalar.
scale numeric scalar.
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].
log logical; if TRUE, probabilities p are given as log(p).
max distribution for extreme maxima (default) or minima? The default corresponds

to the standard right-skew Gumbel distribution.

Details

dgumbel, pgumbel and ggumbel are implemented in C for speed and care is taken that ’correct’
results are provided for values of NA, NaN, Inf, -Inf or just extremely small or large.

The distribution functions, densities and gradients are used in the Newton-Raphson algorithms in
fitting cumulative link models with clm and cumulative link mixed models with clmm.

Value

pgumbel gives the distribution function, dgumbel gives the density, ggumbel gives the gradient of
the density, qgumbel is the quantile function, and rgumbel generates random deviates.

Author(s)

Rune Haubo B Christensen

References

https://en.wikipedia.org/wiki/Gumbel_distribution

See Also

Gradients of densities are also implemented for the normal, logistic, cauchy, cf. gfun and the log-
gamma distribution, cf. lgamma.

https://en.wikipedia.org/wiki/Gumbel_distribution

income 37

Examples

Illustrating the symmetry of the distribution functions:
pgumbel(5) == 1 - pgumbel(-5, max=FALSE) ## TRUE
dgumbel(5) == dgumbel(-5, max=FALSE) ## TRUE
ggumbel(5) == -ggumbel(-5, max=FALSE) ## TRUE

More examples:
x <- -5:5

(pp <- pgumbel(x))
qgumbel(pp)
dgumbel(x)
ggumbel(x)

(ppp <- pgumbel(x, max=FALSE))
Observe that probabilities close to 0 are more accurately determined than
probabilities close to 1:
qgumbel(ppp, max=FALSE)
dgumbel(x, max=FALSE)
ggumbel(x, max=FALSE)

random deviates:
set.seed(1)
(r1 <- rgumbel(10))
set.seed(1)
r2 <- -rgumbel(10, max = FALSE)
all(r1 == r2) ## TRUE

income Income distribution (percentages) in the Northeast US

Description

Income distribution (percentages) in the Northeast US in 1960 and 1970 adopted from McCullagh
(1980).

Usage

income

Format

year year.

pct percentage of population in income class per year.

income income groups. The unit is thousands of constant (1973) US dollars.

38 lgamma

Source

Data are adopted from McCullagh (1980).

References

McCullagh, P. (1980) Regression Models for Ordinal Data. Journal of the Royal Statistical Society.
Series B (Methodological), Vol. 42, No. 2., pp. 109-142.

Examples

print(income)

Convenient table:
(tab <- xtabs(pct ~ year + income, income))

small rounding error in 1970:
rowSums(tab)

compare link functions via the log-likelihood:
links <- c("logit", "probit", "cloglog", "loglog", "cauchit")
sapply(links, function(link) {

clm(income ~ year, data=income, weights=pct, link=link)$logLik })
a heavy tailed (cauchy) or left skew (cloglog) latent distribution
is fitting best.

The data are defined as:
income.levels <- c(0, 3, 5, 7, 10, 12, 15)
income <- paste(income.levels, c(rep("-", 6), "+"),

c(income.levels[-1], ""), sep = "")
income <-

data.frame(year=factor(rep(c("1960", "1970"), each = 7)),
pct = c(6.5, 8.2, 11.3, 23.5, 15.6, 12.7, 22.2,

4.3, 6, 7.7, 13.2, 10.5, 16.3, 42.1),
income=factor(rep(income, 2), ordered=TRUE,

levels=income))

lgamma The log-gamma distribution

Description

Density, distribution function and gradient of density for the log-gamma distribution. These are
implemented in C for speed and care is taken that the correct results are provided for values of NA,
NaN, Inf, -Inf or just extremely small or large values.

The log-gamma is a flexible location-scale distribution on the real line with an extra parameter, λ.
For λ = 0 the distribution equals the normal or Gaussian distribution, and for λ equal to 1 and -1,
the Gumbel minimum and maximum distributions are obtained.

lgamma 39

Usage

plgamma(q, lambda, lower.tail = TRUE)

dlgamma(x, lambda, log = FALSE)

glgamma(x, lambda)

Arguments

x, q numeric vector of quantiles.

lambda numerical scalar

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].

log logical; if TRUE, probabilities p are given as log(p).

Details

If λ < 0 the distribution is right skew, if λ = 0 the distribution is symmetric (and equals the normal
distribution), and if λ > 0 the distribution is left skew.

These distribution functions, densities and gradients are used in the Newton-Raphson algorithms in
fitting cumulative link models with clm2 and cumulative link mixed models with clmm2 using the
log-gamma link.

Value

plgamma gives the distribution function, dlgamma gives the density and glgamma gives the gradient
of the density.

Author(s)

Rune Haubo B Christensen

References

Genter, F. C. and Farewell, V. T. (1985) Goodness-of-link testing in ordinal regression models. The
Canadian Journal of Statistics, 13(1), 37-44.

See Also

Gradients of densities are also implemented for the normal, logistic, cauchy, cf. gfun and the
Gumbel distribution, cf. gumbel.

Examples

Illustrating the link to other distribution functions:
x <- -5:5
plgamma(x, lambda = 0) == pnorm(x)
all.equal(plgamma(x, lambda = -1), pgumbel(x)) ## TRUE, but:
plgamma(x, lambda = -1) == pgumbel(x)

40 nominal_test

plgamma(x, lambda = 1) == pgumbel(x, max = FALSE)

dlgamma(x, lambda = 0) == dnorm(x)
dlgamma(x, lambda = -1) == dgumbel(x)
dlgamma(x, lambda = 1) == dgumbel(x, max = FALSE)

glgamma(x, lambda = 0) == gnorm(x)
all.equal(glgamma(x, lambda = -1), ggumbel(x)) ## TRUE, but:
glgamma(x, lambda = -1) == ggumbel(x)
all.equal(glgamma(x, lambda = 1), ggumbel(x, max = FALSE)) ## TRUE, but:
glgamma(x, lambda = 1) == ggumbel(x, max = FALSE)
There is a loss of accuracy, but the difference is very small:
glgamma(x, lambda = 1) - ggumbel(x, max = FALSE)

More examples:
x <- -5:5
plgamma(x, lambda = .5)
dlgamma(x, lambda = .5)
glgamma(x, lambda = .5)

nominal_test Likelihood ratio tests of model terms in scale and nominal formulae

Description

Add all model terms to scale and nominal formulae and perform likelihood ratio tests. These tests
can be viewed as goodness-of-fit tests. With the logit link, nominal_test provides likelihood ratio
tests of the proportional odds assumption. The scale_test tests can be given a similar interpreta-
tion.

Usage

nominal_test(object, ...)

S3 method for class 'clm'
nominal_test(object, scope, trace=FALSE, ...)

scale_test(object, ...)

S3 method for class 'clm'
scale_test(object, scope, trace=FALSE, ...)

Arguments

object for the clm method an object of class "clm", i.e., the result of a call to clm.

nominal_test 41

scope a formula or character vector specifying the terms to add to scale or nominal. In
nominal_test terms in scope already in nominal are ignored. In scale_test
terms in scope already in scale are ignored.
In nominal_test the default is to add all terms from formula (location part)
and scale that are not also in nominal.
In scale_test the default is to add all terms from formula (location part) that
are not also in scale.

trace if TRUE additional information may be given on the fits as they are tried.

... arguments passed to or from other methods.

Details

The definition of AIC is only up to an additive constant because the likelihood function is only
defined up to an additive constant.

Value

A table of class "anova" containing columns for the change in degrees of freedom, AIC, the like-
lihood ratio statistic and a p-value based on the asymptotic chi-square distribtion of the likelihood
ratio statistic under the null hypothesis.

Author(s)

Rune Haubo B Christensen

Examples

Fit cumulative link model:
fm <- clm(rating ~ temp + contact, data=wine)
summary(fm)
test partial proportional odds assumption for temp and contact:
nominal_test(fm)
no evidence of non-proportional odds.
test if there are signs of scale effects:
scale_test(fm)
no evidence of scale effects.

tests of scale and nominal effects for the housing data from MASS:
if(require(MASS)) {

fm1 <- clm(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
scale_test(fm1)
nominal_test(fm1)
Evidence of multiplicative/scale effect of 'Cont'. This is a breach
of the proportional odds assumption.

}

42 predict.clm

predict.clm Predict Method for CLM fits

Description

Obtains predictions from a cumulative link model.

Usage

S3 method for class 'clm'
predict(object, newdata, se.fit = FALSE, interval = FALSE,

level = 0.95,
type = c("prob", "class", "cum.prob", "linear.predictor"),
na.action = na.pass, ...)

Arguments

object a fitted object of class inheriting from clm.

newdata optionally, a data frame in which to look for variables with which to predict.
Note that all predictor variables should be present having the same names as the
variables used to fit the model. If the response variable is present in newdata
predictions are obtained for the levels of the response as given by newdata. If
the response variable is omitted from newdata predictions are obtained for all
levels of the response variable for each of the rows of newdata.

se.fit should standard errors of the predictions be provided? Not applicable and ig-
nored when type = "class".

interval should confidence intervals for the predictions be provided? Not applicable and
ignored when type = "class".

level the confidence level.

type the type of predictions. "prob" gives probabilities, "class" gives predicted re-
sponse class membership defined as highest probability prediction, "cum.prob"
gives cumulative probabilities (see details) and "linear.predictor" gives pre-
dictions on the scale of the linear predictor including the boundary categories.

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

... further arguments passed to or from other methods.

Details

If newdata is omitted and type = "prob" a vector of fitted probabilities are returned identical to the
result from fitted.

If newdata is supplied and the response variable is omitted, then predictions, standard errors and
intervals are matrices rather than vectors with the same number of rows as newdata and with one
column for each response class. If type = "class" predictions are always a vector.

predict.clm 43

If newdata is omitted, the way missing values in the original fit are handled is determined by
the na.action argument of that fit. If na.action = na.omit omitted cases will not appear in the
residuals, whereas if na.action = na.exclude they will appear (in predictions, standard errors or
interval limits), with residual value NA. See also napredict.

If type = "cum.prob" or type = "linear.predictor" there will be two sets of predictions, stan-
dard errors and intervals; one for j and one for j-1 (in the usual notation) where j = 1, ..., J index the
response classes.

If newdata is supplied and the response variable is omitted, then predict.clm returns much the
same thing as predict.polr (matrices of predictions). Similarly, if type = "class".

If the fit is rank-deficient, some of the columns of the design matrix will have been dropped. Predic-
tion from such a fit only makes sense if newdata is contained in the same subspace as the original
data. That cannot be checked accurately, so a warning is issued (cf. predict.lm).

If a flexible link function is used (Aranda-Ordaz or log-gamma) standard errors and confidence
intervals of predictions do not take the uncertainty in the link-parameter into account.

Value

A list containing the following components

fit predictions or fitted values if newdata is not supplied.

se.fit if se.fit=TRUE standard errors of the predictions otherwise NULL.

upr, lwr if interval=TRUE lower and upper confidence limits.

Author(s)

Rune Haubo B Christensen

See Also

clm, clmm.

Examples

simple model:
fm1 <- clm(rating ~ contact + temp, data=wine)
summary(fm1)

Fitted values with standard errors and confidence intervals:
predict(fm1, se.fit=TRUE, interval=TRUE) # type="prob"
class predictions for the observations:
predict(fm1, type="class")

newData <- expand.grid(temp = c("cold", "warm"),
contact = c("no", "yes"))

Predicted probabilities in all five response categories for each of
the four cases in newData:
predict(fm1, newdata=newData, type="prob")
now include standard errors and intervals:

44 profile.clmm2

predict(fm1, newdata=newData, se.fit=TRUE, interval=TRUE, type="prob")

profile.clmm2 Confidence intervals and profile likelihoods for the standard deviation
for the random term in cumulative link mixed models

Description

Computes confidence intervals from the profiled likelihood for the standard devation for the random
term in a fitted cumulative link mixed model, or plots the associated profile likelihood function.

Usage

S3 method for class 'profile.clmm2'
confint(object, parm = seq_along(Pnames), level = 0.95, ...)

S3 method for class 'clmm2'
profile(fitted, alpha = 0.01, range, nSteps = 20, trace = 1, ...)

S3 method for class 'profile.clmm2'
plot(x, parm = seq_along(Pnames), level = c(0.95, 0.99),

Log = FALSE, relative = TRUE, fig = TRUE, n = 1e3, ..., ylim = NULL)

Arguments

object a fitted profile.clmm2 object.

fitted a fitted clmm2 object.

x a profile.clmm2 object.

parm For confint.profile.clmm2: a specification of which parameters are to be
given confidence intervals, either a vector of numbers or a vector of names. If
missing, all parameters are considered. Currently only "stDev" or 1 are sup-
ported.
For plot.profile.clmm2: a specification of which parameters the profile like-
lihood are to be plotted for, either a vector of numbers or a vector of names. If
missing, all parameters are considered. Currently only "stDev" or 1 are sup-
ported.

level the confidence level required. Observe that the model has to be profiled in the
appropriate region; otherwise the limits are NA.

trace logical. Should profiling be traced? Defaults to TRUE due to the time consuming
nature of the computation.

alpha Determines the range of profiling. By default the likelihood is profiled approx-
imately in the 99% confidence interval region as determined by the Wald ap-
proximation. This is usually sufficient for 95% profile likelihood confidence
limits.

profile.clmm2 45

range if range is specified, this overrules the range computation based on alpha. range
should be all positive and stDev is profiled in range(range).

nSteps the number of points at which to profile the likelihood function. This determines
the resolution and accuracy of the profile likelihood function; higher values gives
a higher resolution, but also longer computation times.

Log should the profile likelihood be plotted on the log-scale?

relative should the relative or the absolute likelihood be plotted?

fig should the profile likelihood be plotted?

n the no. points used in the spline interpolation of the profile likelihood for plot-
ting.

ylim overrules default y-limits on the plot of the profile likelihood.

... additional argument(s), e.g. graphical parameters for the plot method.

Details

A confint.clmm2 method deliberately does not exist due to the time consuming nature of the
computations. The user is required to compute the profile object first and then call confint on the
profile object to obtain profile likelihood confidence intervals.

In plot.profile.clm2: at least one of Log and relative arguments have to be TRUE.

Value

confint: A matrix with columns giving lower and upper confidence limits. These will be labelled
as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and 97.5%).

plot.profile.clm2 invisibly returns the profile object.

Author(s)

Rune Haubo B Christensen

See Also

profile and confint

Examples

options(contrasts = c("contr.treatment", "contr.poly"))

if(require(lme4)) { ## access cbpp data
cbpp2 <- rbind(cbpp[,-(2:3)], cbpp[,-(2:3)])
cbpp2 <- within(cbpp2, {

incidence <- as.factor(rep(0:1, each=nrow(cbpp)))
freq <- with(cbpp, c(incidence, size - incidence))

})

Fit with Laplace approximation:
fm1 <- clmm2(incidence ~ period, random = herd, weights = freq,

data = cbpp2, Hess = 1)

46 slice

pr.fm1 <- profile(fm1)
confint(pr.fm1)

par(mfrow = c(2,2))
plot(pr.fm1)
plot(pr.fm1, Log=TRUE, relative = TRUE)
plot(pr.fm1, Log=TRUE, relative = FALSE)

}

slice Slice the likelihood of a clm

Description

Slice likelihood and plot the slice. This is usefull for illustrating the likelihood surface around the
MLE (maximum likelihood estimate) and provides graphics to substantiate (non-)convergence of a
model fit. Also, the closeness of a quadratic approximation to the log-likelihood function can be
inspected for relevant parameters. A slice is considerably less computationally demanding than a
profile.

Usage

slice(object, ...)

S3 method for class 'clm'
slice(object, parm = seq_along(par), lambda = 3,

grid = 100, quad.approx = TRUE, ...)

S3 method for class 'slice.clm'
plot(x, parm = seq_along(x),

type = c("quadratic", "linear"), plot.mle = TRUE,
ask = prod(par("mfcol")) < length(parm) && dev.interactive(), ...)

Arguments

object for the clm method an object of class "clm", i.e., the result of a call to clm.

x a slice.clm object, i.e., the result of slice(clm.object).

parm for slice.clm a numeric or character vector indexing parameters, for plot.slice.clm
only a numeric vector is accepted. By default all parameters are selected.

lambda the number of curvature units on each side of the MLE the slice should cover.

grid the number of values at which to compute the log-likelihood for each parameter.

quad.approx compute and include the quadratic approximation to the log-likelihood function?

soup 47

type "quadratic" plots the log-likelihood function which is approximately quadratic,
and "linear" plots the signed square root of the log-likelihood function which
is approximately linear.

plot.mle include a vertical line at the MLE (maximum likelihood estimate) when type =
"quadratic"? Ignored for type = "linear".

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).

... further arguments to plot.default for the plot method. Not used in the slice
method.

Value

The slice method returns a list of data.frames with one data.frame for each parameter slice.
Each data.frame contains in the first column the values of the parameter and in the second column
the values of the (positive) log-likelihood "logLik". A third column is present if quad.approx =
TRUE and contains the corresponding quadratic approximation to the log-likelihood. The original
model fit is included as the attribute "original.fit".

The plot method produces a plot of the likelihood slice for each parameter.

Author(s)

Rune Haubo B Christensen

Examples

fit model:
fm1 <- clm(rating ~ contact + temp, data = wine)
slice the likelihood:
sl1 <- slice(fm1)

three different ways to plot the slices:
par(mfrow = c(2,3))
plot(sl1)
plot(sl1, type = "quadratic", plot.mle = FALSE)
plot(sl1, type = "linear")

Verify convergence to the optimum:
sl2 <- slice(fm1, lambda = 1e-5, quad.approx = FALSE)
plot(sl2)

soup Discrimination study of packet soup

48 soup

Description

The soup data frame has 1847 rows and 13 variables. 185 respondents participated in an A-not A
discrimination test with sureness. Before experimentation the respondents were familiarized with
the reference product and during experimentation, the respondents were asked to rate samples on
an ordered scale with six categories given by combinations of (reference, not reference) and (sure,
not sure, guess) from ’referene, sure’ = 1 to ’not reference, sure’ = 6.

Usage

soup

Format

RESP factor with 185 levels: the respondents in the study.

PROD factor with 2 levels: index reference and test products.

PRODID factor with 6 levels: index reference and the five test product variants.

SURENESS ordered factor with 6 levels: the respondents ratings of soup samples.

DAY factor with two levels: experimentation was split over two days.

SOUPTYPE factor with three levels: the type of soup regularly consumed by the respondent.

SOUPFREQ factor with 3 levels: the frequency with which the respondent consumes soup.

COLD factor with two levels: does the respondent have a cold?

EASY factor with ten levels: How easy did the respondent find the discrimation test? 1 = difficult,
10 = easy.

GENDER factor with two levels: gender of the respondent.

AGEGROUP factor with four levels: the age of the respondent.

LOCATION factor with three levels: three different locations where experimentation took place.

Source

Data are produced by Unilever Research. Permission to publish the data is granted.

References

Christensen, R. H. B., Cleaver, G. and Brockhoff, P. B.(2011) Statistical and Thurstonian models
for the A-not A protocol with and without sureness. Food Quality and Preference, 22, pp. 542-549.

VarCorr 49

VarCorr Extract variance and correlation parameters

Description

The VarCorr function extracts the variance and (if present) correlation parameters for random effect
terms in a cumulative link mixed model (CLMM) fitted with clmm.

Usage

S3 method for class 'clmm'
VarCorr(x, ...)

Arguments

x a clmm object.

... currently not used by the clmm method.

Details

The VarCorr method returns a list of data.frames; one for each distinct grouping factor. Each
data.frame has as many rows as there are levels for that grouping factor and as many columns as
there are random effects for each level. For example a model can contain a random intercept (one
column) or a random intercept and a random slope (two columns) for the same grouping factor.

If conditional variances are requested, they are returned in the same structure as the conditional
modes (random effect estimates/predictions).

Value

A list of matrices with variances in the diagonal and correlation parameters in the off-diagonal —
one matrix for each random effects term in the model. Standard deviations are provided as attributes
to the matrices.

Author(s)

Rune Haubo B Christensen

Examples

fm1 <- clmm(rating ~ contact + temp + (1|judge), data=wine)
VarCorr(fm1)

50 wine

wine Bitterness of wine

Description

The wine data set is adopted from Randall(1989) and from a factorial experiment on factors de-
termining the bitterness of wine. Two treatment factors (temperature and contact) each have two
levels. Temperature and contact between juice and skins can be controlled when cruching grapes
during wine production. Nine judges each assessed wine from two bottles from each of the four
treatment conditions, hence there are 72 observations in all.

Usage

wine

Format

response scorings of wine bitterness on a 0—100 continuous scale.

rating ordered factor with 5 levels; a grouped version of response.

temp temperature: factor with two levels.

contact factor with two levels ("no" and "yes").

bottle factor with eight levels.

judge factor with nine levels.

Source

Data are adopted from Randall (1989).

References

Randall, J (1989). The analysis of sensory data by generalised linear model. Biometrical journal 7,
pp. 781–793.

Tutz, G. and W. Hennevogl (1996). Random effects in ordinal regression models. Computational
Statistics & Data Analysis 22, pp. 537–557.

Examples

head(wine)
str(wine)

Variables 'rating' and 'response' are related in the following way:
(intervals <- seq(0,100, by = 20))
all(wine$rating == findInterval(wine$response, intervals)) ## ok

A few illustrative tabulations:
Table matching Table 5 in Randall (1989):

wine 51

temp.contact.bottle <- with(wine, temp:contact:bottle)[drop=TRUE]
xtabs(response ~ temp.contact.bottle + judge, data = wine)

Table matching Table 6 in Randall (1989):
with(wine, {

tcb <- temp:contact:bottle
tcb <- tcb[drop=TRUE]
table(tcb, rating)

})
or simply: with(wine, table(bottle, rating))

Table matching Table 1 in Tutz & Hennevogl (1996):
tab <- xtabs(as.numeric(rating) ~ judge + temp.contact.bottle,

data = wine)
colnames(tab) <-

paste(rep(c("c","w"), each = 4), rep(c("n", "n", "y", "y"), 2),
1:8, sep=".")

tab

A simple model:
m1 <- clm(rating ~ temp * contact, data = wine)
summary(m1)

Index

∗ datasets
income, 37
soup, 47
wine, 50

∗ distribution
gfun, 34
gumbel, 35
lgamma, 38

∗ models
anova.clm, 4
clm, 5
clm.control, 10
clm.fit, 11
clm2, 13
clm2.control, 18
clmm, 19
clmm.control, 22
clmm2, 23
clmm2.control, 26
condVar, 28
confint, 29
convergence, 32
drop.coef, 33
nominal_test, 40
predict.clm, 42
profile.clmm2, 44
slice, 46
VarCorr, 49

∗ package
ordinal-package, 2

addterm, 14
AIC, 7
anova, 7, 14, 24
anova.clm, 4

clm, 3–5, 5, 10–13, 30, 32, 35, 36, 43
clm.control, 6, 7, 10, 11, 20, 21, 30
clm.fit, 10, 11
clm2, 3, 7, 13, 19, 23, 24, 39

clm2.control, 14, 18, 24
clmm, 3, 19, 22, 23, 28, 35, 36, 43, 49
clmm.control, 20, 22
clmm2, 3, 20, 23, 27, 39, 44
clmm2.control, 24, 26
coef, 7
condVar, 28
confint, 7, 14, 24, 29, 31, 45
confint.clmm2 (profile.clmm2), 44
confint.profile.clmm2 (profile.clmm2),

44
convergence, 32

data.frame, 31
defunct, 3
deprecated, 3
dgumbel (gumbel), 35
dlgamma (lgamma), 38
drop.coef, 33
drop1, 7
dropterm, 7, 14

extractAIC, 7

formula, 6, 13

gcauchy (gfun), 34
gfun, 34, 36, 39
ggumbel (gumbel), 35
glgamma (lgamma), 38
glm, 3
glmer, 24
glogis (gfun), 34
gnorm (gfun), 34
gumbel, 35, 35, 39

income, 37

lgamma, 36, 38
lm, 34
lmer, 3

52

INDEX 53

logLik, 14, 24

Matrix, 3
model.frame, 7
model.matrix, 7, 33

napredict, 43
nlminb, 10, 18, 27
nobs, 7
nominal_test, 40

optim, 10, 18, 27
ordinal (ordinal-package), 2
ordinal-package, 2

par, 30, 47
pgumbel (gumbel), 35
plgamma (lgamma), 38
plot.profile, 14, 24
plot.profile.clm (confint), 29
plot.profile.clmm2 (profile.clmm2), 44
plot.slice.clm (slice), 46
polr, 15
predict, 14, 24, 25
predict.clm, 42
predict.lm, 43
print.convergence.clm (convergence), 32
profile, 7, 14, 24, 31, 45
profile.clm (confint), 29
profile.clmm2, 44

qgumbel (gumbel), 35
qr, 33, 34

ranef (condVar), 28
rgumbel (gumbel), 35

scale_test (nominal_test), 40
slice, 7, 46
soup, 47
step, 7
stepAIC, 7
summary, 7, 14, 24

ucminf, 10, 18, 22, 27
update, 14

VarCorr, 49
vcov, 7, 14, 24

wine, 50

	ordinal-package
	anova.clm
	clm
	clm.control
	clm.fit
	clm2
	clm2.control
	clmm
	clmm.control
	clmm2
	clmm2.control
	condVar
	confint
	convergence
	drop.coef
	gfun
	gumbel
	income
	lgamma
	nominal_test
	predict.clm
	profile.clmm2
	slice
	soup
	VarCorr
	wine
	Index

