
cna: An R Package for Configurational Causal

Inference and Modeling

Michael Baumgartner

University of Bergen, Norway
Mathias Ambühl

Consult AG, Switzerland

Abstract

The R package cna provides comprehensive functionalities for causal inference and
modeling with Coincidence Analysis (CNA), which is a configurational comparative meth-
od of causal data analysis. In this vignette, we first review the theoretical and method-
ological background of CNA. Second, we introduce the data types processable by CNA,
the package’s core analytical functions with their arguments, and some auxiliary func-
tions for data simulations. Third, CNA’s output along with relevant fit parameters and
output attributes are discussed. Fourth, we provide guidance on how to interpret that
output and, in particular, on how to proceed in case of model ambiguities. Finally, some
considerations are offered on benchmarking the reliability of CNA.

Keywords: configurational comparative methods, set-theoretic methods, Coincidence Analysis,
Qualitative Comparative Analysis, INUS causation, Boolean causation.

1. Introduction

Coincidence Analysis (CNA) is a configurational comparative method of causal data analysis
that was introduced for crisp-set (i.e. binary) data in (Baumgartner 2009a; 2009b; 2015)
and substantively extended, reworked, and generalized for multi-value and fuzzy-set data
in (Baumgartner and Ambühl 2020). In recent years, CNA has been applied in numerous
studies across the social and political sciences, with a particularly rapid uptick in usage in
public health, covering a wide range of topics such as colorectal cancer screening, patient
safety in nursing homes, implementation of Hepatitis C virus treatments, drug withdrawal,
COVID-19 vaccination rates, or the connection between firearm laws and homicide rates.1

In contrast to more standard methods of data analysis, which primarily quantify effect sizes,
CNA belongs to a family of methods designed to group causal influence factors conjunctively
(i.e. in complex bundles) and disjunctively (i.e. on alternative pathways). It is firmly rooted
in a so-called regularity theory of causation and it is the only method of its kind that can
recover causal structures with multiple outcomes (effects), for example, causal chains.

Many disciplines investigate causal structures with one or both of the following features:
(i) causes are arranged in complex bundles that only become operative when all of their
components are properly co-instantiated, each of which in isolation is ineffective or leads to
different outcomes, and (ii) outcomes can be brought about along alternative causal routes

1The Zotero CNA library provides detailed references to more than 70 applications of CNA. Among other
impacts, CNA has been showcased in the flagship journal of implementation science (Whitaker et al. 2020).

https://www.zotero.org/groups/4567107/coincidence.analysis/library

2 cna: Configurational Causal Inference and Modeling

S C F

c1 1 1 1

c2 0 0 1

c3 1 0 0

c4 0 1 0

(a)

S C F

S 1.00 0.00 0.00

C 0.00 1.00 0.00

F 0.00 0.00 1.00

(b)

Table 1: Table (a) contains ideal configurational data, where each row depicts a different
configuration of the factors S, C and F. Configuration c1, for example, represents cases (units
of observation) in which all factors take the value 1, whereas in c2, S and C are 0 and F is 1,
etc. Table (b) is the corresponding correlation matrix.

such that, when one route is suppressed, the outcome may still be produced via another one.
For example, from a given set of implementation strategies available to medical facilities, some
strategies yield a desired outcome (e.g. high uptake of treatment innovation) in combination
with certain other strategies, whereas in different combinations the same strategies may have
opposite or no effects (e.g. Yakovchenko et al. 2020). Or, a variation in a phenotype only
occurs if many single-nucleotide polymorphisms interact, and various such interactions can
independently induce the same phenotype (e.g. Culverhouse et al. 2002). Different labels are
used for features (i) and (ii) in different disciplines: “interactions”, “component causation”,
“conjunctural causation”, “alternative causation”, “equifinality”, etc. For uniformity’s sake,
we will subsequently refer to (i) as conjunctivity and to (ii) as disjunctivity of causation,
reflecting the fact that causes form conjunctions and disjunctions, that is, Boolean and- and
or-connections.

Causal structures featuring conjunctivity and disjunctivity pose severe challenges for methods
of causal data analysis. As many theories of causation entail that it is necessary (though not
sufficient) for X to be a cause of Y that there be some kind of dependence (e.g. probabilistic or
counterfactual) between X and Y, standard methods—for instance, regression and Bayesian
network methods—infer that X is not a cause of Y if X and Y are not pairwise dependent
(i.e. correlated). However, structures displaying conjunctivity and disjunctivity often do not
exhibit pairwise dependencies. As a very simple illustration, consider the interplay between
a person’s skills to perform an activity, the challenges posed by that activity, and the actor’s
autotelic experience of complete involvement with the activity called flow (Csikszentmihalyi
1975). A binary model of this interplay involves the factors S, with values 0/1 representing
low/high skills, C, with 0/1 standing for low/high challenges, and F, with 0/1 representing
the absence/presence of flow. Csikszentmihalyi’s (1975, ch. 4) flow theory entails that flow is
triggered if, and only if, skills and challenges are either both high or both low, meaning that
F=1 has the two alternative causes S=1 & C=1 and S=0 & C=0. If the flow theory is true, ideal
(i.e. unbiased, unconfounded, noise-free) data on this structure feature the four configurations
c1 to c4 in Table 1a, and no others. As can easily be seen from the corresponding correlation
matrix in Table 1b, there are no pairwise dependencies. In consequence, standard methods
will struggle to find the flow model, even when processing ideal data on it.

Although standard methods provide various protocols for tracing interaction effects involv-
ing two or three exogenous factors, these interaction calculations face tight computational
complexity restrictions when more exogenous factors are involved and quickly run into multi-
collinearity issues (Brambor et al. 2006). Yet, structures with conjunctivity and disjunctivity

Michael Baumgartner, Mathias Ambühl 3

D
B

C

A

L

1

0

1

0
0

1

1

0

power
source

lamp

+

-

(a)

A B C D L

A 1.00 0.00 0.00 0.00 0.00

B 0.00 1.00 0.00 0.00 0.00

C 0.00 0.00 1.00 0.00 0.00

D 0.00 0.00 0.00 1.00 0.26

L 0.00 0.00 0.00 0.26 1.00

(b)

A B D C L

c1 0 1 1 1 1

c2 1 0 1 1 1

c3 0 0 1 1 1

c4 0 1 1 0 1

c5 1 1 0 0 1

c6 1 0 0 0 1

c7 1 1 1 1 0

c8 1 1 0 1 0

c9 0 1 0 1 0

c10 1 0 0 1 0

c11 0 0 0 1 0

c12 1 1 1 0 0

c13 1 0 1 0 0

c14 0 0 1 0 0

c15 0 1 0 0 0

c16 0 0 0 0 0

(c)

Figure/Table 2: Diagram (a) depicts a simple electrical circuit with three single-pole switches
D, B, A, one double-pole switch C, and one lamp L. Table (c) comprises ideal data on that
circuit and Table (b) the correlation matrix corresponding to that data.

may be much more complex than the flow model. Consider the electrical circuit in Figure
2a. It comprises a lamp L that can be on or off and four switches A to D, each of which
can either be in position 1 or position 0. There are three alternative conjunctions of switch
positions that close the circuit and cause the lamp to be on: A=0 & B=1 & D=1 or A=1 &
C=0 & D=0 or B=0 & C=1 & D=1. As the switches are mutually independent, there are
24 = 16 logically possible configurations of switch positions. For each of these configurations
c1 to c16, Table 2c lists whether the lamp is on (L=1) or off (L=0). That table thus contains
all and only the empirically possible configurations of the five binary factors representing the
switches and the lamp. These are ideal data for the circuit in Figure 2a. Yet, even though all
of the switch positions are causes of the lamp being on in some combination or other, factors
A, B, and C are pairwise independent of L; only D is weakly correlated with L, as can be seen
from the correlation matrix in Table 2b. Standard methods of causal data analysis cannot
infer the causal structure behind that circuit from Table 2c. They are not designed to group
causes conjunctively and disjunctively.

A switch position as A=0 can only be identified as cause of L=1 by finding the whole conjunc-
tion of switch positions in which A=0 is indispensable for closing the circuit. More generally,
discovering causal structures exhibiting conjunctivity and disjunctivity calls for a method
that tracks causation as defined by a theory not treating a dependence between individual
causes and effects as necessary for causation and that embeds values of exogenous factors in
complex Boolean and- and or-functions over many other causes, fitting those functions as a
whole to the data. But the space of Boolean functions over even a handful of factors is vast.
For n binary factors there exist 22n

Boolean functions. For the switch positions in our circuit
there exist 65536 Boolean functions; if we add only one additional binary switch that number
jumps to 4.3 billion and if we also consider factors with more than two values that number
explodes beyond controllability. That means a method capable of correctly discovering causal

4 cna: Configurational Causal Inference and Modeling

structures with conjunctivity and disjunctivity must find ways to efficiently navigate in that
vast space of possibilities. This is the purpose of CNA.

CNA takes data on binary, multi-value or fuzzy-set factors as input and infers causal structures
as defined by the so-called INUS theory from it. The INUS theory was first developed by
Mackie (1974) and later refined to the MINUS theory by Graßhoff and May (2001) (see
also Baumgartner and Falk 2023b; Beirlaen et al. 2018). It defines causation in terms of
redundancy-free Boolean dependency structures and, importantly, does not require causes
and their outcomes to be pairwise dependent. As such, it is custom-built to account for
structures featuring conjunctivity and disjunctivity.

CNA is not the only method for the discovery of (M)INUS structures. Other methods that
can be used for that purpose are Logic Regression (Ruczinski et al. 2003; Kooperberg and
Ruczinski 2005), which is implemented in the R package LogicReg (Kooperberg and Ruczinski
2023),2 and Qualitative Comparative Analysis (QCA; Ragin 2008; Rihoux and Ragin 2009;
Cronqvist and Berg-Schlosser 2009; Thiem 2018), implemented in the R packages QCApro

(Thiem 2018) and QCA (Dusa 2024).3 But CNA is the only method of its kind that can build
models with more than one outcome and, hence, can analyze common-cause and causal chain
structures as well as causal cycles and feedbacks. Moreover, unlike the models produced by
Logic Regression or Qualitative Comparative Analysis, CNA’s models are guaranteed to be
redundancy-free, which makes them directly causally interpretable in terms of the (M)INUS
theory; and CNA is more successful than any other method at exhaustively uncovering all
(M)INUS models that fit the data equally well. For detailed comparisons of CNA with
Qualitative Comparative Analysis and Logic Regression see (Baumgartner and Ambühl 2020;
Swiatczak 2021) and (Baumgartner and Falk 2023a), respectively.

The cna package reflects and implements CNA’s latest stage of development. This vignette
provides a detailed introduction to cna. We first exhibit cna’s theoretical and methodological
background. Second, we discuss the main inputs of the package’s core function cna() along
with numerous auxiliary functions for data review and simulation. Third, the working of the
algorithm implemented in cna() is presented. Fourth, we explain cna()’s output along with
relevant fit parameters and output attributes. Fifth, we provide some guidance on how to
interpret that output and, in particular, on how to proceed in case of model ambiguities.
Finally, some considerations are offered on benchmarking the reliability of cna().

2. Background

The (M)INUS theory of causation belongs to the family of so-called regularity theories, which
have roots as far back as Hume (1999 (1748)). It is a type-level theory of causation (cf.
Baumgartner 2020) that analyzes the dependence relation of causal relevance between fac-
tors/variables taking on specific values, as in “X=χ is causally relevant to Y=γ”. It assumes
that causation is ultimately a deterministic form of dependence, such that whenever the same
complete cause occurs the same effect follows. This entails that indeterministic behavior
patterns in data result from insufficient control over background influences generating noise
and not from the indeterministic nature of the underlying causal processes. For X=χ to be

2Another package implementing a variation of Logic Regression is logicFS (Schwender and Tietz 2024).
3Other useful QCA software include QCAfalsePositive (Braumoeller 2015) and SetMethods (Oana et al.

2023).

https://cran.r-project.org/package=LogicReg
https://cran.r-project.org/package=QCApro
https://cran.r-project.org/package=QCA
https://cran.r-project.org/package=logicFS
https://cran.r-project.org/package=QCAfalsePositive
https://cran.r-project.org/package=SetMethods

Michael Baumgartner, Mathias Ambühl 5

a (M)INUS cause of Y=γ, X=χ must be a difference-maker of Y=γ, meaning—roughly—that
there exists a context in which other causes take constant values and a change from X6=χ to
X=χ is associated with a change from Y 6=γ to Y=γ.

To further clarify that theory as well as the characteristics and requirements of inferring
(M)INUS structures from empirical data a number of preliminaries are needed.

2.1. Factors and their values

Factors are the basic modeling devices of CNA. They are analogous to (random) variables
in statistics, that is, they are functions from (measured) properties into a range of values.
They can be used to represent categorical properties that partition sets of units of observation
(cases) either into two sets, in case of binary properties, or into more than two (but finitely
many) sets, in case of multi-value properties, such that the resulting sets are exhaustive and
pairwise disjoint. Factors representing binary properties can be crisp-set (cs) or fuzzy-set
(fs); the former can take on 0 and 1 as possible values, whereas the latter can take on any
(continuous) values from the unit interval [0, 1]. Factors representing multi-value properties
are called multi-value (mv) factors; they can take on any of an open (but finite) number of
non-negative integers.

Values of a cs or fs factor X can be interpreted as membership scores in the set of cases
exhibiting the property represented by X. A case of type X=1 is a full member of that set,
a case of type X=0 is a (full) non-member, and a case of type X=χi, 0 < χi < 1, is a
member to degree χi. A case is considered a member of X if its membership score χi reaches
the 0.5-anchor, that is, χi ≥ 0.5, and it is a non-member of X if χi < 0.5. An alternative
interpretation, which lends itself particularly well for causal modeling, is that “X=1” stands
for the full presence of the property represented by X, “X=0” for its full absence, and “X=χi”
for its partial presence (to degree χi). By contrast, the values of an mv factor X designate
the particular way in which the property represented by X is exemplified. For instance, if
X represents the education of subjects, X=2 may stand for “high school”, with X=1 (“no
completed primary schooling”) and X=3 (“university”) designating other possible property
exemplifications. Mv factors taking on one of their possible values also define sets, but the
values themselves must not be interpreted as membership scores; rather they denote the
relevant property exemplification.

As the explicit “Factor=value” notation yields convoluted syntactic expressions with increas-
ing model complexity, the cna package uses the following shorthand notation, which is stan-
dard in Boolean algebra (Bowran 1965): membership in a set is expressed by italicized upper
case and non-membership by italicized lower case letters. “X” signifies membership in the set
of cases exhibiting the property represented by X and “x” signifies non-membership in that
set. Italicization thus carries meaning: “X” designates the factor and “X” membership in the
set of cases with values of X above 0.5. In case of mv factors, value assignments to factors
are not abbreviated but always written out, using the “Factor=value” notation.

2.2. Boolean operations

The (M)INUS theory defines causation using the Boolean operations of negation (¬X, or x),
conjunction (X∗Y), disjunction (X + Y), implication (X → Y), and equivalence (X ↔ Y).4

4Note that “∗” and “+” are used as in Boolean algebra here, which means, in particular, that they do not

6 cna: Configurational Causal Inference and Modeling

Inputs Outputs

X Y ¬X X∗Y X + Y X → Y X ↔ Y

1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1

Table 2: Classical Boolean operations applied to cs factors.

Negation is a unary truth function, the other operations are binary truth functions. That is,
they take one resp. two truth values as inputs and output a truth value. When applied to cs

factors, both their input and output set is {0, 1}. Negation is typically translated by “not”,
conjunction by “and”, disjunction by “or”, implication by “if . . . then”, and equivalence by “if
and only if (iff)”. Their classical definitions are given in Table 2.

These operations can be straightforwardly applied to mv factors as well, in which case they
amount to functions from the mv factors’ domain of values into the set {0, 1}. To illustrate,
let both X and Y be ternary factors with values from the domain {0, 1, 2}. The negation of
X=2, viz. ¬(X=2), then returns 1 iff X is not 2, meaning iff X is 0 or 1. X=2∗Y=0 yields 1 iff
X is 2 and Y is 0. X=2 + Y=0 returns 1 iff X is 2 or Y is 0. X=2 → Y=0 yields 1 iff X is not
2 or Y is 0. X=2 ↔ Y=0 issues 1 iff either X is 2 and Y is 0 or X is not 2 and Y is not 0.

For fs factors, the classical Boolean operations must be translated into fuzzy logic. There
exist numerous systems of fuzzy logic (for an overview cf. Hájek 1998), many of which come
with their own renderings of Boolean operations. In the context of CNA (and QCA), the
following fuzzy-logic rendering is standard: negation ¬X is translated in terms of 1 − X,
conjunction X∗Y in terms of the minimum membership score in X and Y , i.e., min(X, Y),
disjunction X + Y in terms of the maximum membership score in X and Y , i.e., max(X, Y),
an implication X → Y is taken to express that the membership score in X is smaller or equal
to Y (X ≤ Y), and an equivalence X ↔ Y that the membership scores in X and Y are equal
(X = Y).

Based on the implication operator, the notions of sufficiency and necessity are defined, which
are the two Boolean dependencies exploited by the (M)INUS theory:

Sufficiency X is sufficient for Y iff X → Y (or equivalently: x + Y ; and colloquially: “if X

is present, then Y is present”);

Necessity X is necessary for Y iff Y → X (or equivalently: x → y or y+X; and colloquially:
“if Y is present, then X is present”).

Analogously for more complex expressions:

• X=3 ∗Z=2 is sufficient for Y=4 iff X=3∗Z=2 → Y=4;

• X=3 + Z=2 is necessary for Y=4 iff Y=4 → X=3 + Z=2;

• X=3 + Z=2 is sufficient and necessary for Y=4 iff X=3 + Z=2 ↔ Y=4.

2.3. (M)INUS causation

represent the linear algebraic (arithmetic) operations of multiplication and addition (notational variants of
Boolean “∗” and “+” are “∧” and “∨”). For a standard introduction to Boolean algebra see (Bowran 1965).

Michael Baumgartner, Mathias Ambühl 7

Boolean dependencies of sufficiency and necessity amount to mere patterns of co-occurrence
of factor values; as such, they carry no causal connotations whatsoever. In fact, most Boolean
dependencies do not reflect causal dependencies. To mention just two well-rehearsed examples:
the sinking of a properly functioning barometer in combination with high temperatures and
blue skies is sufficient for weather changes, but it does not cause the weather; or whenever it
rains, the street gets wet, hence, wetness of the street is necessary for rainfall but certainly
not causally relevant for it. At the same time, some dependencies of sufficiency and necessity
are in fact due to underlying causal dependencies: rainfall is sufficient for wet streets and also
a cause thereof, or the presence of oxygen is necessary for fires and also a cause thereof.

That means the crucial problem to be solved by the (M)INUS theory is to filter out those
Boolean dependencies that are due to underlying causal dependencies and are, hence, amenable
to a causal interpretation. The main reason why most sufficiency and necessity relations do
not reflect causation is that they either contain redundancies or are themselves redundant
to account for the behavior of the outcome, whereas causal conditions do not feature re-
dundant elements and are themselves indispensable to account for the outcome in at least
one context. Accordingly, to filter out the causally interpretable Boolean dependencies, they
need to be freed of redundancies. In Mackie’s (1974, 62) words, causes are I nsufficient but
Non-redundant parts of Unnecessary but Sufficient conditions (thus the acronym INUS).

While Mackie’s INUS theory only requires that sufficient conditions be freed of redundancies,
he himself formulates a problem for that theory, viz. the Manchester Factory Hooters problem
(Mackie 1974, 81-87), which Graßhoff and May (2001) solve by eliminating redundancies
also from necessary conditions. Accordingly, modern versions of the INUS theory stipulate
that whatever can be removed from sufficient or necessary conditions without affecting their
sufficiency and necessity is not a difference-maker and, hence, not a cause. The causally
interesting sufficient and necessary conditions are minimal in the following sense:

Minimal sufficiency A conjunction Φ of coincidently instantiated factor values (e.g., X1
∗ . . .

∗Xn) is a minimally sufficient condition of Y iff Φ → Y and there does not exist a proper
part Φ′ of Φ such that Φ′ → Y , where a proper part Φ′ of Φ is the result of eliminating
one or more conjuncts from Φ.

Minimal necessity A disjunction Ψ of minimally sufficient conditions (e.g., Φ1 + . . . + Φn)
is a minimally necessary condition of Y iff Y → Ψ and there does not exist a proper
part Ψ′ of Ψ such that Y → Ψ′, where a proper part Ψ′ of Ψ is the result of eliminating
one or more disjuncts from Ψ.

Minimally sufficient and minimally necessary conditions can be combined to so-called atomic
MINUS-formulas (Beirlaen et al. 2018; or, equivalently, minimal theories, Graßhoff and May
2001), which, in turn, can be combined to complex MINUS-formulas:5

Atomic MINUS-formula An atomic MINUS-formula of an outcome Y is an expression
Ψ ↔ Y , where Ψ is a minimally necessary disjunction of minimally sufficient conditions
of Y , in disjunctive normal form.6

5We provide suitably simplified definitions that suffice for our purposes here. For complete definitions see
(Baumgartner and Falk 2023b).

6An expression is in disjunctive normal form iff it is a disjunction of one or more conjunctions of one or
more literals (i.e. factor values; Lemmon 1965, 190).

8 cna: Configurational Causal Inference and Modeling

Complex MINUS-formula A complex MINUS-formula of outcomes Y1, . . . , Yn is a con-
junction (Ψ1 ↔ Y1)∗ . . . ∗(Ψn ↔ Yn) of atomic MINUS-formulas that is itself redundancy-
free, meaning it does not logically entail a proper part of itself.7

MINUS-formulas connect Boolean dependencies to causal dependencies: only those Boolean
dependencies are causally interpretable that appear in MINUS-formulas. To make this con-
crete, consider the following atomic MINUS-formula:

A∗e + C∗d ↔ B (1)

(1) being a MINUS-formula of B entails that A∗e and C∗d, but neither A, e, C, nor d alone,
are sufficient for B and that A∗e + C∗d, but neither A∗e nor C∗d alone, are necessary for B.
If this holds, it follows that for each factor value in (1) there exists a difference-making pair,
meaning a pair of configurations such that a change in that factor value alone accounts for a
change in the outcome (Baumgartner and Falk 2023b, 9). For example, A being part of the
MINUS-formula (1) entails that there are two configurations σi and σj such that e is given
and C∗d is not given in both σi and σj , while σi features A and B and σj features neither A

nor B. Only if such a difference-making pair 〈σi, σj〉 exists is A indispensable to account for
B. Analogously, (1) being a MINUS-formula entails that there exist difference-making pairs
for all other factor values in (1).

To define causation in terms of Boolean difference-making, an additional constraint is needed
because not all MINUS-formulas faithfully represent causation. Complete redundancy elim-
ination is relative to the set of analyzed factors F, meaning that factor values contained in
MINUS-formulas relative to some F may fail to be part of a MINUS-formulas relative to
supersets of F (Baumgartner 2013). In other words, by adding further factors to the analysis,
factor values that originally appeared to be non-redundant to account for an outcome can
turn out to be redundant after all. Hence, a permanence constraint needs to be imposed:
only factor values that are permanently non-redundant, meaning that cannot be rendered
redundant by expanding factor sets, are causally relevant.

These considerations yield the following definition of causation:

Causal Relevance (MINUS) X is causally relevant to Y if, and only if, (I) X is part
of a MINUS-formula of Y relative to some factor set F and (II) X remains part of a
MINUS-formula of Y across all expansions of F.

Two features of the (MINUS) definition make it particularly well suited for the analysis of
structures affected by conjunctivity and disjunctivity. First, (MINUS) does not require that
causes and effects are pairwise dependent. The following is a well-formed MINUS-formula
expressing the flow model from the introduction: S∗C + s∗c ↔ F . As shown in Table
1, ideal data generated from that model feature no pairwise dependencies. Nonetheless, if,
say, high skills are permanently non-redundant to account for flow in combination with high
challenges, they are causally relevant for flow subject to (MINUS), despite being uncorrelated
with flow. Second, MINUS-formulas whose elements satisfy the permanence constraint not
only identify causally relevant factor values but also place a Boolean ordering over these

7The purpose of the redundancy-freeness constraint imposed on complex MINUS-formulas is to avoid struc-
tural and partial structural redundancies; see section 5.5 below.

Michael Baumgartner, Mathias Ambühl 9

causes, such that conjunctivity and disjunctivity can be directly read off their syntax. Take
the following example:

(A∗b + a∗B ↔ C) ∗ (C∗f + D ↔ E) (2)

If (2) complies with (MINUS.I) and (MINUS.II), it entails these causal ascriptions:

1. the factor values listed on the left-hand sides of “↔” are causally relevant for the factor
values on the right-hand sides;

2. A and b are jointly relevant to C and located on a causal path that differs from the
path on which the jointly relevant a and B are located; C and f are jointly relevant to
E and located on a path that differs from D’s path;

3. there is a causal chain from A∗b and a∗B via C to E.

2.4. Inferring MINUS causation from data

Inferring MINUS causation from data faces various challenges. First, as anticipated in sec-
tion 1, causal structures for which conjunctivity and disjunctivity hold cannot be uncovered
by scanning data for dependencies between pairs of factor values and suitably combining
dependent pairs. Instead, discovering MINUS causation requires searching for dependen-
cies between complex Boolean functions of exogenous factors and outcomes. But the space
of Boolean functions over more than five factors is so vast that it cannot be exhaustively
scanned. Hence, algorithmic strategies are needed to purposefully narrow down the search.

Second, condition (MINUS.II) is not comprehensively testable. Once a MINUS-formula of an
outcome Y comprising a factor value X has been inferred from data δ, the question arises
whether the non-redundancy of X in accounting for Y is an artefact of δ, due, for example, to
the uncontrolled variation of confounders, or whether it is genuine and persists when further
factors are taken into consideration. But in practice, expanding the set of factors is only
feasible within narrow confines. To make up for the impossibility to test (MINUS.II), the
analyzed data δ should be collected in such a way that Boolean dependencies in δ are not
induced by an uncontrolled variation of latent causes but by the measured factors themselves.
If the dependencies in δ are not artefacts of latent causes, they cannot be neutralized by
factor set expansions, meaning they are permanent and, hence, causal. It follows that in
order for it to be guaranteed that causal inferences drawn from δ are error-free, δ must meet
very high quality standards. In particular, the uncontrolled causal background of δ must be
homogeneous (Baumgartner and Thiem 2020, 286):

Homogeneity The unmeasured causal background of data δ is homogeneous if, and only if,
latent causes not connected to the outcome(s) in δ on causal paths via the measured
exogenous factors (so-called off-path causes) take constant values (i.e. do not vary) in
the cases recorded in δ.

However, third, real-life data often do not meet very high quality standards. Rather, they
tend to be fragmented to the effect that not all empirically possible configurations of analyzed
factors are actually observed. Moreover, real-life data typically feature noise, that is, config-
urations incompatible with data-generating causal structures. Noise is induced, for instance,

10 cna: Configurational Causal Inference and Modeling

by measurement error or limited control over latent causes, i.e. confounding. In the presence
of noise there may be no strict Boolean sufficiency or necessity relations in the data, meaning
that methods of MINUS discovery can only approximate strict MINUS structures by fitting
their models more or less closely to the data using suitable parameters and thresholds of
model fit (see De Souter 2024). Moreover, noise stemming from the uncontrolled variation of
latent causes gives rise to homogeneity violations, which yield that inferences to MINUS cau-
sation are not guaranteed to be error-free. In order to nonetheless distill causal information
from noisy data, strategies for avoiding over- and underfitting and estimating the error risk
are needed (see Parkkinen and Baumgartner 2023).

Fourth, according to the MINUS theory, the inference to causal irrelevance is much more
demanding than the inference to causal relevance. Establishing that X is a MINUS cause of
Y requires demonstrating the existence of at least one context with a constant background in
which a difference in X is associated with a difference in Y , whereas establishing that X is
not a MINUS cause of Y requires demonstrating the non-existence of such a context, which
is impossible on the basis of the non-exhaustive data samples that are typically analyzed
in real-life studies. Correspondingly, the fact that, say, G does not appear in (2) does not
imply that G is causally irrelevant to C or E. The non-inclusion of G simply means that
the data from which (2) has been derived do not contain evidence for the causal relevance of
G. However, future research having access to additional data might reveal the existence of a
difference-making context for G and, hence, entail the causal relevance of G to C or E after
all.

Finally, on a related note, as a result of the common fragmentation of real-life data δ MINUS-
formulas inferred from δ cannot be expected to completely reflect the causal structure gener-
ating δ. That is, MINUS-formulas inferred from δ are inevitably going to be incomplete. They
only detail those causally relevant factor values along with those conjunctive, disjunctive, and
sequential groupings for which δ contain difference-making evidence. What difference-making
evidence is contained in δ not only depends on the cases recorded in δ but, when δ is noisy, also
on the tuning thresholds imposed to approximate strict Boolean dependency structures; rela-
tive to some such tuning settings an association between X and Y may pass as a sufficiency or
necessity relation whereas relative to another setting it will not. Hence, the inference to MI-
NUS causation is sensitive to the chosen tuning settings, to the effect that choosing different
settings is often going to be associated with changes in inferred MINUS-formulas.

A lot of variance (though not all) in inferred MINUS-formulas is unproblematic. Two dif-
ferent MINUS-formulas mi and mj derived from δ using different tuning settings are in no
disagreement if mi and mj are related in terms of the submodel relation:

Submodel relation A MINUS-formula mi is a submodel of another MINUS-formula mj if,
and only if, the causal ascriptions entailed by mi are a subset of the causal ascriptions
entailed by mj .

If mi is a submodel of mj , mj is a supermodel of mi. All of mi’s causal ascriptions are
contained in its supermodels’ ascriptions, and mi contains the causal ascriptions of its own
submodels. The submodel relation is reflexive: every model is a submodel (and supermodel)
of itself; or differently, if mi and mj are submodels of one another, then mi and mj are
identical. Most importantly, if two MINUS-formulas related by the submodel relation are not
identical, they can be interpreted as describing the same causal structure at different levels
of detail.

Michael Baumgartner, Mathias Ambühl 11

Before we turn to the cna package, a terminological note is required. In the literature on
configurational comparative methods it has become customary to refer to the models produced
by the methods as solution formulas. To mirror that convention, the cna package refers to
atomic MINUS-formulas inferred from data by CNA as atomic solution formulas, asf, for
short, and to complex MINUS-formulas inferred from data as complex solution formulas, csf.
For brevity, we will henceforth mainly use the shorthands asf and csf.

3. The input of CNA

The goal of CNA is to output all asf and csf within provided bounds of model complexity
that fit an input data set relative to provided tuning settings, in particular, fit thresholds.
The algorithm performing this task in the cna package is implemented in the function cna().
Its most important arguments are:

cna(x, type, ordering = NULL, strict = FALSE, outcome = TRUE, con = 1,

cov = 1, con.msc = con, notcols = NULL, maxstep = c(3, 4, 10),

inus.only = TRUE, suff.only = FALSE, what = if (suff.only) "m" else "ac",

details = FALSE, acyclic.only = FALSE)

This section explains most of these inputs and introduces some auxiliary functions. The
arguments inus.only, what, details, and acyclic.only will be discussed in section 5.

3.1. Data

Data δ processed by CNA have the form of m×k matrices, where m is the number of units of
observation (cases) and k is the number of measured factors. δ can either be of type “crisp-
set” (cs), “multi-value” (mv) or “fuzzy-set” (fs). Data that feature cs factors only are cs.
If the data contain at least one mv factor, they count as mv. Data featuring at least one
fs factor are treated as fs.8 Examples of each data type are given in Table 3. Raw data
collected in a study typically need to be suitably calibrated before they can be fed to cna().
We do not address the calibration problem here because it is the same for CNA as for QCA,
in which context it has been extensively discussed, for example, by Thiem and Duşa (2013) or
Schneider and Wagemann (2012). The R packages QCApro, QCA, and SetMethods provide
all tools necessary for data calibration.

Data are given to the cna() function via the argument x, which must be a data frame or
an object of class “configTable” as output by the configTable() function (see section 3.1.1
below). The cna package contains a number of exemplary data sets from published stud-
ies, d.autonomy, d.educate, d.irrigate, d.jobsecurity, d.minaret, d.pacts, d.pban,
d.performance, d.volatile, d.women, and one simulated data set, d.highdim. For details
on their contents and sources, see the cna reference manual. After having loaded the cna

package, all of them are directly (i.e. without separate loading) available for processing:

R> library(cna)

R> cna(d.educate)

R> cna(d.women)

8Note, first, that factors calibrated at crisp-set thresholds may appear with unsuitably extreme values if
the data as a whole are treated as fs due to some fs factor, and second, that mixing mv and fs factors in
one analysis is (currently) not supported.

https://cran.r-project.org/package=QCApro
https://cran.r-project.org/package=QCA
https://cran.r-project.org/package=SetMethods
https://cran.r-project.org/web/packages/cna/cna.pdf

12 cna: Configurational Causal Inference and Modeling

A B C D

c1 0 0 0 0
c2 0 1 0 0
c3 1 1 0 0
c4 0 0 1 0
c5 1 0 0 1
c6 1 0 1 1
c7 0 1 1 1
c8 1 1 1 1

(a) cs data

A B C D

c1 1 3 3 1
c2 2 2 1 2
c3 2 1 2 2
c4 2 2 2 2
c5 3 3 3 2
c6 2 4 3 2
c7 1 3 3 3
c8 1 4 3 3

(b) mv data

A B C D E

c1 0.37 0.30 0.16 0.06 0.25
c2 0.89 0.39 0.64 0.09 0.03
c3 0.06 0.61 0.92 0.37 0.15
c4 0.65 0.93 0.92 0.18 0.93
c5 0.08 0.08 0.12 0.86 0.91
c6 0.70 0.02 0.85 0.91 0.97
c7 0.04 0.72 0.76 0.90 0.68
c8 0.81 0.96 0.89 0.72 0.82

(c) fs data

Table 3: Data types processable by CNA.

Prior to version 3.2 of the cna package, cna() needed be told explicitly what type of data x

contains using the type argument. Now, type has the default value "auto" inducing auto-
matic detection of the data type. The type argument remains in the package for backwards
compatibility and in order to allow the user to specify the data type manually: type = "cs"

stands for cs data, type = "mv" for mv data, and type = "fs" for fs data.9

Configuration tables

To facilitate the reviewing of data, the configTable() function assembles cases with identical
configurations in a so-called configuration table. In previous versions of the cna package, these
tables were called “truth tables”, which however led to confusion with the QCA terminology,
where a very different type of object is also referred to by that label. While a QCA truth table
indicates for every configuration of all exogenous factors (i.e. for every minterm) whether it is
sufficient for the outcome, a CNA configuration table does not express relations of sufficiency
but simply amounts to a compact representation of the data that lists all configurations
exactly once and adds a column indicating how many instances (cases) of each configuration
are contained in the data.

configTable(x, type, case.cutoff = 0)

The first input x is a data frame or matrix. The function then merges multiple rows of
x featuring the same configuration into one row, such that each row of the resulting table
corresponds to one determinate configuration of the factors in x. The number of occurrences
of a configuration and an enumeration of the cases instantiating it are saved as attributes “n”
and “cases”, respectively. The argument type is the same as in the cna() function; it specifies
the data type and takes the default value "auto" inducing automatic data type detection.

R> configTable(d.women)

configTable of type "cs"

ES QU WS WM LP WNP | n.obs

SE 1 1 1 0 0 1 | 1

FI 1 0 1 0 0 1 | 1

9The corresponding shortcut functions cscna(), mvcna(), and fscna() also remain available; see
?shortcuts.

Michael Baumgartner, Mathias Ambühl 13

IS,NO 1 1 1 1 1 1 | 2

DK 1 0 1 1 1 1 | 1

BE,NL 1 1 0 1 1 1 | 2

ES 1 1 0 1 0 1 | 1

AT 1 1 0 0 1 1 | 1

NZ 0 0 0 1 1 1 | 1

DE 0 1 0 1 1 1 | 1

CH,GR,PT 1 1 0 0 0 0 | 3

AU,FR,GB,IE 0 1 0 1 0 0 | 4

LU 1 0 0 0 1 0 | 1

CA,US 0 0 0 1 0 0 | 2

IT 0 1 0 0 0 0 | 1

Total no.of.cases: 22

configTable() provides a numeric argument called case.cutoff, which allows for set-
ting a minimum frequency cutoff determining that configurations with less instances in the
data are not included in the configuration table and the ensuing analysis. For instance,
configTable(x, case.cutoff = 3) entails that configurations that are instantiated in less
than 3 cases are excluded.

Configuration tables produced by configTable() can be directly passed to cna(). Moreover,
as configuration tables generated by configTable() are objects that are very particular to
the cna package, the function ct2df() is available to transform configuration tables back into
ordinary R data frames.

R> pact.ct <- configTable(d.pacts, case.cutoff = 2)

R> ct2df(pact.ct)

Data simulations

The cna package provides extensive functionalities for data simulations—which, in turn, are
essential for inverse search trials that benchmark CNA’s output (see section 7). In a nut-
shell, the functions allCombs() and full.ct() generate the space of all logically possible
configurations over a given set of factors, selectCases() selects, from this space, the con-
figurations that are compatible with a data-generating causal structure, which, in turn, can
be randomly drawn by randomAsf() and randomCsf(), makeFuzzy() fuzzifies that data, and
some() randomly selects cases, for instance, to produce data fragmentation.

More specifically, allCombs(x) takes an integer vector x as input and generates a data frame
of all possible value configurations of length(x) factors, the first factor having x[1] values,
the second x[2] values etc. The factors are labeled using capital letters in alphabetical order.
Analogously, but more flexibly, full.ct(x) generates a configuration table with all logically
possible value configurations of the factors defined in the input x, which can be a configuration
table, a data frame, an integer, a list specifying the factors’ value ranges, or a character vector
featuring all admissible factor values.

R> allCombs(c(2, 2, 2)) - 1

R> allCombs(c(3, 4, 5))

14 cna: Configurational Causal Inference and Modeling

R> full.ct("A + B*c")

R> full.ct(6)

R> full.ct(list(A = 1:2, B = 0:1, C = 1:4))

The input of selectCases(cond, x) is a character string cond specifying a Boolean function,
which typically (but not necessarily) expresses a data-generating MINUS structure, as well as,
optionally, a data frame or configuration table x. If x is specified, the function selects the cases
that are compatible with cond from x; if x is not specified, it selects from full.ct(cond).
It is possible to randomly draw cond using randomAsf(x) or randomCsf(x), which generate
random atomic and complex solution (i.e. MINUS-)formulas, respectively, from a data frame
or configuration table x.

R> dat1 <- allCombs(c(2, 2, 2)) - 1

R> selectCases("A + B <-> C", dat1)

R> selectCases("(h*F + B*C*k + T*r <-> G)*(A*b + H*I*K <-> E)")

R> target <- randomCsf(full.ct(6))

R> selectCases(target)

The closely related function selectCases1(cond, x, con = 1, cov = 1) additionally al-
lows for providing consistency (con) and coverage (cov) thresholds (see section 3.2), such that
some cases that are incompatible with cond are also selected, as long as cond still meets con

and cov in the resulting data. Thereby, measurement error or noise can be simulated in a
manner that allows for controlling the degree of case incompatibilities.

R> dat2 <- full.ct(list(EN = 0:2, TE = 0:4, RU = 1:4))

R> selectCases1("EN=1*TE=3 + EN=2*TE=0 <-> RU=2", dat2, con = .75, cov = .75)

makeFuzzy(x, fuzzvalues = c(0, 0.05, 0.1)) simulates fuzzy-set data by transforming
a data frame or configuration table x consisting of cs factors into an fs configuration table.
To this end, the function adds values selected at random from the argument fuzzvalues to
the 0’s and subtracts them from the 1’s in x. fuzzvalues is a numeric vector of values from
the interval [0,1].

R> makeFuzzy(selectCases("Hunger + Heat <-> Run"),

+ fuzzvalues = seq(0, 0.4, 0.05))

Finally, some(x, n = 10, replace = TRUE) randomly selects n cases from a data frame or
configuration table x, with or without replacement. If x features all configurations that are
compatible with a data-generating structure and n < nrow(x), the data frame or configura-
tion table issued by some() is fragmented, meaning it does not contain all empirically possible
configurations. If n > nrow(x), data of large sample sizes can be generated featuring multiple
instances of the empirically possible configurations.

R> dat3 <- allCombs(c(3, 4, 5))

R> dat4 <- selectCases("A=1*B=3 + A=3 <-> C=2", mvct(dat3))

R> some(dat4, n = 10, replace = FALSE)

R> some(dat4, n = 1000, replace = TRUE)

Michael Baumgartner, Mathias Ambühl 15

3.2. Consistency and coverage

As real-life data tend to feature measurement error or noise induced by variations in latent
causes, strictly sufficient or necessary conditions for an outcome often do not exist. In order
to nonetheless distill some causal information from such data, methods for MINUS discovery
have to suitably fit their models to the data. To this end, Ragin (2006) imported the so-
called consistency and coverage measures into the QCA protocol, both of which are also
serviceable for the purposes of CNA. Consistency corresponds to what is known as precision
or positive predictive value in various fields of machine learning. It measures the proportion
of cases in the data instantiating a condition (whether sufficient, necessary or a whole model)
in combination with the outcome. Coverage, which is equivalent to recall and sensitivity in
machine learning, measures the proportion of cases in the data that instantiate an outcome
in combination with the condition (whether sufficient, necessary, or a whole model).10 As the
implication operator underlying the notions of sufficiency and necessity is defined differently
in classical and in fuzzy logic, the two measures have different formal definitions for, on one
hand, crisp-set and multi-value data (which both have a classical footing), and, on the other,
for fuzzy-set data. Cs-consistency (concs) and cs-coverage (covcs) are defined as follows:

concs(X → Y) =
|X∗Y |δ

|X|δ
covcs(X → Y) =

|X∗Y |δ
|Y |δ

where X and Y are individual factor values or Boolean functions thereof in the analyzed
data δ, and | . . . |δ stands for the cardinality of the set of cases in δ instantiating the enclosed
expression. Fs-consistency (confs) and fs-coverage (covfs) of X → Y are defined as follows,
where n is the number of cases in the data:

confs(X → Y) =

∑n
i=1 min(Xi, Yi)

∑n
i=1 Xi

covfs(X → Y) =

∑n
i=1 min(Xi, Yi)

∑n
i=1 Yi

Whenever the values of X and Y are restricted to 1 and 0 in the crisp-set measures, concs

and covcs are equivalent to confs and covfs, but for binary factors with values other than 1
and 0 and for multi-value factors that equivalence does not hold. Nonetheless, we will in the
following not explicitly distinguish between the cs and fs measures because our discussion
will make it sufficiently clear which of them is at issue.

Consistency and coverage thresholds can be given to the cna() function using the arguments
con.msc, con, and cov that take values from the interval [0, 1]. con.msc sets the consistency
threshold for minimally sufficient conditions (msc), con does the same for asf and csf, while
cov sets the coverage threshold for asf and csf (no coverage threshold is imposed on msc). As
illustrated on pp. 16-17 of the cna reference manual, setting different consistency thresholds
for msc and asf/csf can enhance the informativeness of cna()’s output in certain cases but
is non-standard. The standard setting is con = con.msc.

The default numeric value for all thresholds is 1, i.e. perfect consistency and coverage. Con-
trary to QCA, which often returns solutions that do not comply with the chosen consistency
threshold and which does not impose a coverage threshold at all, CNA uses consistency and
coverage as authoritative model building criteria such that, if they are not met, CNA abstains
from issuing solutions. That means, if the default thresholds are used, cna() will only output
perfectly consistent msc, asf, and csf and only perfectly covering asf and csf.

10De Souter (2024) has recently shown that CNA can also benefit from other evaluation measures from
machine learning, such as specificity and negative predictive value.

https://cran.r-project.org/web/packages/cna/cna.pdf

16 cna: Configurational Causal Inference and Modeling

If the data are noisy, the default thresholds will typically not yield any solution formulas.
In such cases, con and cov may be suitably lowered. By lowering con to, say, 0.75 in a cs

analysis, cna() is given permission to treat X as sufficient for Y , even though Y is absent
from 25% of the cases with X. Or by lowering cov to 0.75 in an fs analysis, cna() is allowed
to treat X as necessary for Y , even though the sum of the membership scores in Y over all
cases in the data exceeds the sum of the membership scores in min(X, Y) by 25%.

Determining the optimal values to which con and cov should be lowered in a specific discovery
context is a delicate task. On the one hand, CNA faces a severe overfitting risk when the
data contain configurations incompatible with the data-generating structure, meaning that
con and cov must not be set too high (i.e. too close to 1). On the other hand, the lower con

and cov are set, the less complex and informative CNA’s output will be, that is, the more
CNA’s purpose of uncovering causal complexity will be undermined. To find a suitable balance
between over- and underfitting, Parkkinen and Baumgartner (2023) systematically re-analyze
the data at all con and cov settings in the interval [0.7, 1], collect all solutions resulting from
such a re-analysis series in a set M, and select the solution formula(s) with the most sub- and
supermodels in M. These are the solutions with the highest overlap in causal ascriptions with
the other solutions in M. They are the most robust solutions inferable from the data. This
approach to robustness scoring is implemented in the function frscored_cna(x, fit.range,

granularity) of the R package frscore (Parkkinen and Baumgartner 2024).11 The function
accepts all arguments of cna(), except for con, con.msc, and cov. It analyzes the data x at all
consistency and coverage threshold combinations in the interval fit.range with increments
specified by granularity, and it scores the resulting models based on their robustness.

R> library(frscore)

R> frscored_cna(d.autonomy, ordering = "AU", fit.range = c(1, 0.8),

+ granularity = 0.1)

If the analyst does not want to conduct a whole robustness analysis, reasonable non-perfect
consistency and coverage settings are con = cov = 0.8 or 0.75. To illustrate, cna() does
not build solutions for the d.jobsecurity data at the following con and cov thresholds (the
argument outcome is explained in section 3.3 below):

R> cna(d.jobsecurity, outcome = "JSR", con = 1, cov = 1)

R> cna(d.jobsecurity, outcome = "JSR", con = .9, cov = .9)

But if con and cov are set to 0.75, 20 solutions are returned:

R> cna(d.jobsecurity, outcome = "JSR", con = .75, cov = .75)

In the presence of noise, it is generally advisable to vary the con and cov settings to some
degree in order to get a sense for how sensitive the model space reacts to changes in tuning
settings and for the overlap in causal ascriptions between different solutions. Less complex
solutions with more overlap with the rest of the returned solutions are generally preferable
over more complex solutions with less overlap. If the consistency and coverage scores of

11In addition, the R package cnaOpt (Ambühl and Baumgartner 2022) provides functions for finding the
maximal consistency and coverage scores obtainable from a given data set and for identifying models reaching
those scores. For a discussion of possible applications of maximal scores see (Baumgartner and Ambühl 2021).

https://cran.r-project.org/package=frscore
https://cran.r-project.org/package=cnaOpt

Michael Baumgartner, Mathias Ambühl 17

resulting solutions can be increased by raising the con and cov settings without, at the same
time, disproportionately increasing the solutions’ complexity, solutions with higher fit are
preferable over solutions with lower fit. But if an increase in fit comes with a substantive
increase in model complexity, less complex models with lower fit are to be preferred (to avoid
overfitting).

3.3. Outcome and ordering

In principle, the cna() function does not need to be told which factors in the data x are
endogenous (i.e. outcomes) and which ones are exogenous (i.e. causes). It attempts to infer
that from x. But if it is known prior to the analysis what factors have values that can figure
as outcomes, this information can be given to cna() via the argument outcome, which takes
as input a character vector specifying one or several factor values that are to be considered
as potential outcome(s). In case of cs and fs data, factor values are expressed by upper
and lower cases (e.g. outcome = c("A", "b")), in the mv case, they are expressed by the
“Factor=value” notation (e.g. outcome = c("A=1","B=3")). The default is outcome = TRUE,
which means that all factor values in x are potential outcomes.

When the data x contain multiple potential outcomes, it may moreover be known, prior to
the analysis, that these outcomes are causally ordered in a certain way, to the effect that
some of them are causally upstream of the others. Such information can be given to CNA via
a causal ordering, which is a relation A ≺ C (defined on the factors in x) entailing that values
of C cannot cause values of A (e.g. because instances of A occur temporally before instances
of C). That is, an ordering excludes certain causal dependencies but does not stipulate any.
The corresponding argument is called ordering. It takes as value a character string. For
example, ordering = "A, B < C" determines that factor C is causally located after A and B,
meaning that values of C are not potential causes of values of A and B. The latter are located
on the same level of the ordering, for A and B are unrelated by ≺, whereas C is located on
a level that is downstream of the A, B-level. If an ordering is provided, cna() only searches
for MINUS-formulas in accordance with the ordering; if no ordering is provided, cna() treats
values of all factors in x as potential outcomes and explores whether a MINUS-formula for
them can be inferred. An ordering does not need to explicitly mention all factors in x. If only
a subset of the factors are included in the ordering, the non-included factors are entailed to be
upstream of the included ones. Hence, ordering = "C" means that C is located downstream
of all other factors in x.

Additionally, the logical argument strict is available. It determines whether the elements
of one level in an ordering can be causally related or not. For example, if ordering = "A,

B < C" and strict = TRUE, then values of A and B are excluded to be causally related
and cna() skips corresponding tests. By contrast, if ordering = "A, B < C" and strict =

FALSE, then cna() also searches for dependencies among values of A and B.

Let us illustrate with the data set d.autonomy. Relative to the following function call, which
stipulates that values of AU cannot cause values of EM, SP, and CO and that the latter
factors are not mutually causally related, cna() infers that SP is causally relevant to AU

(i.e. SP ↔ AU):12

R> dat.aut.1 <- d.autonomy[15:30, c("AU","EM","SP","CO")]

12The function csf() used in the following code builds the csf from a cna() solution object; see section 5.1.

18 cna: Configurational Causal Inference and Modeling

R> ana.aut.1 <- cna(dat.aut.1, ordering = "EM, SP, CO < AU", strict = TRUE,

+ con = .9, cov = .9)

R> printCols <- c("condition", "consistency", "coverage")

R> csf(ana.aut.1)[printCols]

condition consistency coverage

1 SP <-> AU 0.935 0.915

If we set strict to FALSE and, thereby, allow for causal dependencies among values of EM,
SP, and CO, it turns out that SP not only causes AU , but, on another causal path, also
makes a difference to EM :

R> ana.aut.2 <- cna(dat.aut.1, ordering = "EM, SP, CO < AU", strict = FALSE,

+ con = .9, cov = .9)

R> csf(ana.aut.2)[printCols]

condition consistency coverage

1 (SP <-> AU)*(SP + CO <-> EM) 0.912 0.915

The arguments ordering and outcome interact closely. It is often not necessary to specify
both of them. For example, ordering = "C", strict = TRUE is equivalent to outcome =

"C". Still, it is important to note that the characters assigned to ordering are interpreted
as factors, whereas the characters assigned to outcome are interpreted as factor values. This
difference may require the specification of both ordering and outcome, in particular, when
only specific values of the factors in the ordering are potential outcomes. To illustrate,
compare the following two function calls:

R> cna(d.pban, ordering = "T, PB", con = .75, cov = .75)

R> cna(d.pban, outcome = c("T=2", "PB=1"), ordering = "T, PB",

+ con = .75, cov = .75)

The first call entails that any values of the factors T and PB, in that order, are located at
the downstream end of the causal structure generating the data d.pban. It returns various
solutions for PB=1 as well as for both T=0 and T=2. The second call, by contrast, narrows
the search down to T=2 as only potential outcome value of factor T, such that no solutions
for T=0 are produced.

In general, cna() should be given all the causal information about the interplay of the factors
in the data that is available prior to the analysis. There often exist many MINUS-formulas
that fit the data equally well. The more prior information cna() has at its disposal, the more
specific the output will be, on average.

3.4. Maxstep

As will be exhibited in more detail in section 4, cna() builds atomic solution formulas (asf),
viz. minimally necessary disjunctions of minimally sufficient conditions (msc), from the bot-
tom up by gradually permuting and testing conjunctions and disjunctions of increasing com-
plexity for sufficiency and necessity. The combinatorial search space that this algorithm has

Michael Baumgartner, Mathias Ambühl 19

to scan depends on a variety of different aspects, for instance, on the number of factors in x,
on the number of values these factors can take, on the number and length of the recovered
msc, etc. As the search space may be too large to be exhaustively scanned in reasonable time,
the argument maxstep allows for setting an upper bound for the complexity of the generated
asf. maxstep takes a vector of three integers c(i, j, k) as input, entailing that the generated
asf have maximally j disjuncts with maximally i conjuncts each and a total of maximally k

factor values. The default is maxstep = c(3,4,10). The user can set it to any complexity
level if computational time and resources are not an issue.

The maxstep argument is particularly relevant for the analysis of high dimensional data and
data featuring severe model ambiguities. As an example of the first kind, consider the data
d.highdim comprising 50 crisp-set factors, V1 to V50, and 1191 cases, which were simulated
from a presupposed data-generating structure with the outcomes V 13 and V 11 (see the cna

reference manual for details). These data feature 20% noise and massive fragmentation. At the
default maxstep, the following analysis, which finds the complete data-generating structure,
takes between 15 and 20 seconds to complete; lowering maxstep to c(2,3,10) reduces that
time to less than one second, at the expense of only finding half of the data-generating
structure:

R> cna(d.highdim, outcome = c("V13", "V11"), con = .8, cov = .8)

R> cna(d.highdim, outcome = c("V13", "V11"), con = .8, cov = .8,

+ maxstep = c(2,3,10))

A telling example of extensive model ambiguities is the data set d.volatile. At the default
maxstep, cna() quickly recovers 416 complex solution formulas (csf). But those are by far
not all csf that fit d.volatile equally well. When maxstep is increased only slightly to
c(4,4,10), the number of csf jumps to 2860:13

R> cna(d.volatile, ordering = "VO2", maxstep = c(3,4,10))

R> vol1 <- cna(d.volatile, ordering = "VO2", maxstep = c(4,4,10))

R> csf(vol1, n.init = 3000)

If maxstep is further increased, the number of solutions explodes and the analysis soon fails to
terminate in reasonable time. When a complete analysis cannot be completed, cna() can be
told to only search for msc by setting the argument suff.only to its non-default value TRUE.
As the search for msc is the part of a CNA analysis that is least computationally demanding,
it will typically terminate quickly and, thus, shed some light on the dependencies among the
factors in x even when the construction of all models is infeasible.

R> cna(d.volatile, ordering = "VO2", maxstep = c(8,10,40), suff.only = TRUE)

If suff.only is set to TRUE, CNA can process data of higher dimensionality than at the argu-
ment’s default value. Yakovchenko et al. (2020), for example, run cna() on data comprising
73 exogenous factors with suff.only = TRUE. Based on the resulting msc, they then select
a proper subset of those factors for further processing.

While the maxstep argument is valuable for controlling the search space in case of high-
dimensional and ambiguous data, it also comes with a pitfall: it may happen that cna() fails

13In the standard print method of cna(), the n.init parameter in csf() is set to 1000; to get all csf, this
parameter needs to be increased. See section 5.1 for details.

https://cran.r-project.org/web/packages/cna/cna.pdf

20 cna: Configurational Causal Inference and Modeling

to find a model because of a maxstep that is too low. An example is d.jobsecurity. At the
default maxstep, cna() does not build a solution, but if maxstep is increased, two solutions
are found.

R> ana.jsc.1 <- cna(d.jobsecurity, ordering = "JSR", con = .9, cov = .85)

R> csf(ana.jsc.1)[printCols]

[1] condition consistency coverage

<0 rows> (or 0-length row.names)

R> ana.jsc.2 <- cna(d.jobsecurity, ordering = "JSR", con = .9, cov = .85,

+ maxstep = c(3,5,12))

R> csf(ana.jsc.2)[printCols]

condition consistency coverage

1 S*V + C*l + L*P + R*V + S*c*R <-> JSR 0.906 0.859

2 C*l + R*V + P*v + S*c*R + S*C*P <-> JSR 0.912 0.853

In sum, there are two possible reasons for why cna() fails to build a solution: (i) the chosen
maxstep is too low; (ii) the chosen con and/or cov values are too high, meaning the processed
data x are too noisy. Accordingly, in case of a null result, two paths should be explored (in
that order): (i) gradually increase maxstep; (ii) lower con and cov, as described in section
3.2 above.

3.5. Negated outcomes

In classical logic, the law of Contraposition ensures that an expression of type Ψ ↔ Y is
equivalent to the expression that results from negating both sides of the double arrow: ¬Ψ ↔
¬Y . Applied to the context of configurational causal modeling that entails that an asf for Y

can be transformed into an asf for the negation of Y , viz. y, based on logical principles alone,
i.e. without a separate data analysis. However, that transformability only holds for asf with
perfect consistency and coverage (con = cov = 1) that are inferred from exhaustive (non-
fragmented) data (see section 5.3 for details on exhaustiveness). If an asf of an outcome Y

does not reach perfect consistency or coverage or is inferred from fragmented data, identifying
the causes of y requires a separate application of cna().

There are two ways to search for the causes of negated outcomes. The first is by simply
specifying the factor values of interest in the outcome argument. While outcome = c("A",

"B") yields MINUS-formulas for the positive outcomes A and B, outcome = c("a", "b")

induces cna() to search for models of the corresponding negated outcomes. Alternatively, the
argument notcols allows for negating the values of factors in cs and fs data (in case of mv

data, cna() automatically searches for models of all possible values of endogenous factors,
thereby rendering notcols redundant). If notcols = "all", all factors are negated, i.e. their
values i are replaced by 1 − i. If notcols is given a character vector of factors in the data,
only the values of the factors in that vector are negated. For example, notcols = c("A",

"B") determines that only A and B are negated.

When processing cs or fs data, CNA should first be used to model the positive outcomes.
If resulting asf and csf do not reach perfect consistency, coverage, and exhaustiveness scores

Michael Baumgartner, Mathias Ambühl 21

(and the causes of the negated outcomes are of interest), a second CNA should be run negating
the values of all factors that have been modeled as outcomes in the first CNA. To illustrate,
we revisit our analysis of d.autonomy from section 3.3, which identified AU and EM as
outcomes. The following two calls of cna() conduct analyses of the corresponding negated
outcomes that produce the same solutions.

R> ana.aut.3 <- cna(dat.aut.1, outcome = c("au", "em"), con = .88, cov = .82)

R> csf(ana.aut.3)[printCols]

condition consistency coverage

1 (sp <-> au)*(sp*co <-> em) 0.882 0.821

R> ana.aut.4 <- cna(dat.aut.1, ordering = "AU", con = .88, cov = .82,

+ notcols = c("AU", "EM"))

R> csf(ana.aut.4)[printCols]

condition consistency coverage

1 (sp <-> au)*(sp*co <-> em) 0.882 0.821

4. The CNA algorithm

This section explains the working of the algorithm implemented in the cna() function. We
first provide an informal summary and then a detailed outline in four stages. The aim of
cna() is to find all msc, asf, and csf that meet con.msc, con and cov in the input data
x in accordance with outcome, ordering, and maxstep. The algorithm starts with single
factor values and tests whether they meet con.msc; if that is not the case, it proceeds to
test conjunctions of two factor values, then to conjunctions of three, and so on. Whenever a
conjunction meets con.msc (and no proper part of it has previously been identified to meet
con.msc), it is automatically a minimally sufficient condition msc, and supersets of it do
not need to be tested any more. Then, it tests whether single msc meet con and cov; if
not, it proceeds to disjunctions of two, then to disjunctions of three, and so on. Whenever a
disjunction meets con and cov (and no proper part of it has previously been identified to meet
con and cov), it is automatically a minimally necessary disjunction of msc, and supersets of
it do not need to be tested any more. All and only those disjunctions of msc that meet both
con and cov are then issued as asf. Finally, recovered asf are conjunctively concatenated
to csf while eliminating structural redundancies and deleting tautologous and contradictory
solutions as well as solutions with partial structural redundancies and constant factors.

The cna() algorithm can be more specifically broken down into four stages.

Stage 1 On the basis of outcome and ordering, cna() first builds a set of potential outcomes
O = {Oh=ωf , . . . , Om=ωg} from the set of factors F = {O1, . . . , On} in x,14 where
1 ≤ h ≤ m ≤ n, and second assigns a set of potential cause factors COi

from F \ {Oi}

14Note that if x is a data frame, cna() first transforms x into a configuration table by means of
configTable(x), thereby passing the argument type (and the two additional arguments rm.dup.factors

and rm.const.factors) to the configTable() function.

22 cna: Configurational Causal Inference and Modeling

to every element Oi=ωk of O. If no outcome and ordering are provided, all value
assignments to all elements of F are treated as possible outcomes in case of mv data,
whereas in case of cs and fs data O is set to {O1=1, . . . , On=1}.

Stage 2 cna() attempts to build a set mscOi
=ωk

of minimally sufficient conditions that meet
con.msc for each Oi=ωk ∈ O. To this end, it first checks for each value assignment
Xh=χj of each element of COi

, such that Xh=χj has a membership score above 0.5 in
at least one case in x, whether the consistency of Xh=χj → Oi=ωk meets con.msc, i.e.
whether con(Xh=χj → Oi=ωk) ≥ con.msc. If, and only if, that is the case, Xh=χj is
put into the set mscOi

=ωk
. Next, cna() checks for each conjunction of two factor values

Xm=χj ∗ Xn=χl from COi
, such that Xm=χj ∗ Xn=χl has a membership score above 0.5

in at least one case in x and no part of Xm=χj ∗ Xn=χl is already contained in mscOi
=ωk

,
whether con(Xm=χj ∗ Xn=χl → Oi=ωk) ≥ con.msc. If, and only if, that is the case,
Xm=χj ∗ Xn=χl is put into the set mscOi

=ωk
. Next, conjunctions of three factor values

with no parts already contained in mscOi
=ωk

are tested, then conjunctions of four factor
values, etc., until either all logically possible conjunctions of the elements of COi

have
been tested or maxstep is reached. Every non-empty mscOi

=ωk
is passed on to the third

stage.

Stage 3 cna() attempts to build a set asfOi
=ωk

of atomic solution formulas for every Oi=ωk ∈
O, which has a non-empty mscOi

=ωk
, by disjunctively concatenating the elements of

mscOi
=ωk

to minimally necessary conditions of Oi=ωk that meet con and cov. To
this end, it first checks for each single condition Φh ∈ mscOi

=ωk
whether con(Φh →

Oi=ωk) ≥ con and cov(Φh → Oi=ωk) ≥ cov. If, and only if, that is the case, Φh is
put into the set asfOi

=ωk
. Next, cna() checks for each disjunction of two conditions

Φm +Φn from mscOi
=ωk

, such that no part of Φm +Φn is already contained in asfOi
=ωk

,
whether con(Φm + Φn → Oi=ωk) ≥ con and cov(Φm + Φn → Oi=ωk) ≥ cov. If, and
only if, that is the case, Φm + Φn is put into the set asfOi

=ωk
. Next, disjunctions of

three conditions from mscOi
=ωk

with no parts already contained in asfOi
=ωk

are tested,
then disjunctions of four conditions, etc., until either all logically possible disjunctions
of the elements of mscOi

=ωk
have been tested or maxstep is reached. Every non-empty

asfOi
=ωk

is passed on to the fourth stage.

Stage 4 cna() calls the function csf(), which builds a set csfO of complex solution formulas.
This is done in a stepwise manner as follows. First, all logically possible conjunctions
of exactly one element from every non-empty asfOi

=ωk
are constructed. Second, if

inus.only = TRUE (see section 5.2 below), the conjunctions resulting from step 1 are
freed of structural redundancies (cf. Baumgartner and Falk 2023b), and tautologous
and contradictory solutions as well as solutions with partial structural redundancies
and constant factors are eliminated. Third, if acyclic.only = TRUE, solutions with
cyclic substructures are eliminated. Fourth, for those solutions that were modified in
the previous steps, consistency and coverage are re-calculated and solutions that no
longer reach con or cov are eliminated. The remaining solutions are returned as csfO.
If there is only one non-empty set asfOi

=ωk
, csfO is identical to asfOi

=ωk
.

To illustrate, the following code chunk, first, simulates the data in Table 3c, p. 12, and second,
runs cna() (and csf()) on that data with con = .8 and cov = .8, with default maxstep,
and without outcome specification or ordering.

Michael Baumgartner, Mathias Ambühl 23

R> dat5 <- allCombs(c(2, 2, 2, 2, 2)) -1

R> dat6 <- selectCases("(A + B <-> C)*(A*B + D <-> E)", dat5)

R> set.seed(3)

R> tab3c <- makeFuzzy(dat6, fuzzvalues = seq(0, 0.4, 0.01))

R> cna(tab3c, con = .8, cov = .8, what = "mac")

Table 3c contains data of type fs, meaning that the values in the data matrix are interpreted
as membership scores in fuzzy sets. As is customary for this data type, we use uppercase italics
for membership in a set and lowercase italics for non-membership. In the absence of prior
knowledge about potential outcomes and a causal ordering, the set of potential outcomes is
determined to be O = {A, B, C, D, E} in stage 1, that is, the presence of each factor in Table
3c is treated as a potential outcome. Moreover, all other factors are potential cause factors
of every element of O, hence, CA = {B, C, D, E}, CB = {A, C, D, E}, CC = {A, B, D, E},
CD = {A, B, C, E}, and CE = {A, B, C, D}.

In stage 2, cna() succeeds in building non-empty sets of minimally sufficient conditions
in compliance with con.msc and con for all elements of O: mscA = {B∗d∗E}, mscB =
{C∗d, d∗E, a∗C∗D, a∗C∗E, a∗C∗e}, mscC = {A, B, d∗E}, mscD = {b∗E, a∗E, c∗E}, mscE =
{D, A∗B, A∗C}. But only the elements of mscC and mscE can be disjunctively com-
bined to atomic solution formulas that meet cov in stage 3: asfC = {A + B ↔ C} and
asfE = {D + A∗B ↔ E, D + A∗C ↔ E}. For the other three factors in O, the coverage
threshold of 0.8 cannot be satisfied. cna() therefore abstains from issuing asf for A, B and
D.

Finally, in stage 4 one redundancy-free csf is built from the inventory of asf in asfC and
asfE , which constitutes cna()’s final output for Table 3c:

(A + B ↔ C) ∗ (D + A∗B ↔ E) con = 0.836; cov = 0.897 (3)

5. The output of CNA

5.1. Customizing the output

The default output of cna() first lists the provided ordering, second, the asf that were
recovered in accordance with the ordering, and third, the csf. Asf and csf are ordered by
complexity and the product of consistency and coverage. For asf and csf, four attributes are
standardly computed: consistency, coverage, complexity, and inus. consistency and
coverage correspond to a solution’s consistency and coverage scores, which measures have
been explained in section 3.2 above. The complexity score amounts to the number of factor
values on the left-hand sides of "→" or "↔" in asf and csf ; and the inus attribute indicates
whether a solution has the form of a well-formed MINUS structure (for more on the inus

attribute cf. section 5.2 below).

cna() can compute additional solution attributes, all of which will be explained below:
exhaustiveness, and faithfulness for both asf and csf, as well as coherence, redundant,
and cyclic for csf. These attributes are accessible via the details argument, which can be
given the values TRUE/FALSE, for computing all/none of the additional attributes, or a charac-
ter vector specifying the attributes to be computed: for example, details = c("faithful-

24 cna: Configurational Causal Inference and Modeling

ness", "exhaustiveness")—the strings can also be abbreviated, e.g. "f" for "faithful-

ness", "e" for "exhaustiveness", etc.

R> cna(d.educate, details = TRUE)

R> cna(d.educate, details = c("co", "cy"))

The output of cna() can be further customized through the argument what that controls
which solution items to print. It can be given a character string specifying the requested
solution items: "t" stands for the configuration table, "m" for minimally sufficient conditions
(msc), "a" for asf, "c" for csf, and "all" for all solution items.

R> cna(d.educate, what = "tm")

R> cna(d.educate, what = "mac")

R> cna(d.educate, what = "all")

As shown in section 3.4, it can happen that many asf and csf fit the data equally well. The
standard output of cna() only features 5 solution items of each type. To recover all msc and
asf the functions msc(x) and asf(x) are available, where x is a solution object of cna().

R> vol2 <- cna(d.volatile, ordering = "VO2", con = .9, cov = .9)

R> msc(vol2)

R> asf(vol2)

R> print(asf(vol2), Inf)

While msc() and asf() simply access the complete sets of msc and asf stored in x, the csf
are not stored in x. The construction of csf in the fourth stage of the CNA algorithm is not
conducted by the cna() function itself, rather, it is outsourced to the function csf() with
these main arguments:

csf(x, n.init = 1000, inus.only = x$inus.only,

minimalizeCsf = inus.only, cyclic.only = x$acyclic.only,

cycle.type = x$cycle.type, verbose = FALSE)

The arguments inus.only, minimalizeCsf, cyclic.only, and cycle.type will be further
discussed in the following sections, n.init and verbose are explained in the remainder of
this one. It can happen that the set asfOi

=ωk
contains too many asf to construct all csf in

reasonable time. The argument n.init therefore allows for controlling how many conjunctions
of asf are initially built in the first step of csf construction (see stage 4 of the CNA algorithm);
it defaults to 1000. Increasing or lowering that default results in more or less csf being built
and in longer or shorter computing times, respectively.

R> csf(vol2, n.init = 2000)

R> csf(vol2, n.init = 100)

Setting the argument verbose to its non-default value TRUE prints some information about
the csf construction process to the console, e.g. how many structural redundancies or cyclic
substructures have been eliminated along the way.

R> csf(vol2, verbose = TRUE)

Michael Baumgartner, Mathias Ambühl 25

5.2. INUS vs. non-INUS solutions

The (M)INUS-theory of causation (cf. section 2.3) has been developed for strictly Boolean
discovery contexts, meaning for deterministic (i.e. noise-free) data that feature perfectly suffi-
cient and necessary conditions. In such contexts, some Boolean expressions can be identified
as non-minimal (i.e. as featuring redundant elements) on mere logical grounds, that is, inde-
pendently of data. For instance, in an expression as

A + a∗B ↔ C (4)

a in the second disjunct is redundant, for (4) is logically equivalent to A + B ↔ C. These
two formulas state exactly the same. Under no conceivable circumstances could a as contained
in (4) ever make a difference to C. To see this, note that a necessary condition for a∗B to be
a complex cause of C is that there exists a context F such that C is only instantiated when
both a and B are given. That means that, in F , C is not instantiated if B is given but a is
not, which, in turn, means that C is not instantiated if B is given and A (viz. not-a) is given.
But such an F cannot possibly exist, for A itself is sufficient for C according to (4). It follows
that in every context where B is instantiated, a change from A to a is not associated with a
change in C (which takes the value 1 throughout the change in the factor A), meaning that
a cannot possibly make a difference to C and, hence, cannot be a cause of C. That is, (4)
can be identified as non-minimal independently of all data. (4) is not a well-formed causal
model. It is not a MINUS-formula, or not an INUS solution.

Correspondingly, a solution as (4) or any other non-INUS expression will never be inferred
from strictly deterministic data. By contrast, it is possible that a necessary disjunction of
sufficient conditions that does not have INUS form is redundancy-free (or minimal) relative
to indeterministic data. Hence, the solution attribute inus makes explicit whether an asf
or csf is an INUS solution. Moreover, the cna() and the csf() functions both have an
argument inus.only controlling whether only INUS solutions (MINUS-formulas) shall be
built or whether non-INUS solutions shall be issued as well (if they are inferable from data).
As inus.only defaults to TRUE, standard calls of cna() and csf() will never yield non-INUS
solutions, even if such solutions might be inferable from data. But if the analyst is interested
in non-(M)INUS structures as well, she can request corresponding solutions by inus.only =

FALSE.

To illustrate this, we first show that CNA never infers non-(M)INUS solutions from deter-
ministic data—even if inus.only = FALSE. For this purpose, we simulate ideal data from
the non-INUS solution in (4); cna(..., inus.only = FALSE) will always, i.e. upon an open
number of re-runs of the following code chunk, return A + B ↔ C, regardless of the fact
that we select cases based on (4) with selectCases1("A + a*B <-> C", ...).

R> dat.inu.1 <- allCombs(c(2, 2, 2)) -1

R> dat.inu.2 <- some(dat.inu.1, 40, replace = TRUE)

R> dat.inu.3 <- selectCases1("A + a*B <-> C", con = 1, cov = 1, dat.inu.2)

R> asf(cna(dat.inu.3, con = 1, cov = 1, inus.only = FALSE))

outcome condition consistency coverage complexity inus

1 C A + B <-> C 1 1 2 TRUE

26 cna: Configurational Causal Inference and Modeling

But in real-life discovery contexts, especially in observational studies, deterministic depen-
dencies are the exception rather than the norm. Ordinary (observational) data are indeter-
ministic, meaning that causes tend to be combined both with the presence and the absence
of outcomes. In such discovery contexts, which can be simulated by lowering con and cov

in selectCases1(), non-INUS expressions may count as minimally necessary disjunctions of
minimally sufficient conditions. Correspondingly, if inus.only is set to FALSE, cna() may
infer non-INUS solutions:

R> set.seed(26)

R> dat.inu.4 <- some(dat.inu.1, 40, replace = TRUE)

R> dat.inu.5 <- selectCases1("A + a*B <-> C", con = .8, cov = .8, dat.inu.4)

R> asf(cna(dat.inu.5, con = .8, cov = .8, inus.only = FALSE))

outcome condition consistency coverage complexity inus

1 C A + a*B <-> C 0.826 0.826 3 FALSE

In indeterministic data, it can happen that a is needed to lift the consistency of B above the
chosen con threshold. In such a case, a can be argued to make a difference to C: only in
conjunction with a does B reach con; and this holds notwithstanding the fact that A itself
also meets con. Or put differently, when the consistency of A → C is below 1, there exist
cases where A is instantiated and C is not, which, in turn, renders it possible for a change
from A to a, while B is constantly instantiated, to be associated with a change in C, meaning
that a can be a difference-maker for C.

If non-INUS expressions can be inferred from indeterministic data, the crucial follow-up ques-
tion is whether the indeterminism in the data is due to insufficient control of background
influences (i.e. to noise, measurement error, etc.) or to the inherent indeterministic nature of
the physical processes themselves (as can e.g. be found in the domain of quantum mechan-
ics, cf. Albert 1992). If the latter is the case, the difference-making relations stipulated by
non-INUS solutions should be taken seriously. By contrast, if the former is the case (i.e. the
indeterminism is due to noise), the difference-making relations entailed by non-INUS solu-
tions are mere artifacts of the noise in the data, meaning that they would disappear if the
corresponding causal structure were investigated under more ideal discovery circumstances.
In that case, which obtains in the macro domains to which CNA is typically applied, the
argument inus.only should be left at its default value TRUE both in cna() and csf(). If
inus.only is switched to TRUE in the cna()-call from the previous code chunk, no solution
is returned any more, that is, there does not exist a MINUS-formula satisfying con and cov

for dat.inu.5:

R> asf(cna(dat.inu.5, con = .8, cov = .8, inus.only = TRUE))

[1] outcome condition consistency coverage complexity

[6] inus

<0 rows> (or 0-length row.names)

The function behind the solution attribute inus and the argument inus.only is also available
as stand-alone function is.inus(). Logical redundancies as contained in non-INUS solutions

Michael Baumgartner, Mathias Ambühl 27

can be eliminated by means of the function minimalize() (see the cna reference manual for
details).

5.3. Exhaustiveness and faithfulness

Exhaustiveness and faithfulness are two measures of model fit that quantify the degree of
correspondence between the configurations that are, in principle, compatible with a solu-
tion m and the configurations actually contained in the data from which m is derived. To
demonstrate those measures, let Fm symbolize the set of factors with values contained in
m. Exhaustiveness is high when all or most configurations of the factors in Fm that are
compatible with m are actually contained in the data. More specifically, it amounts to the
ratio of the number of configurations over Fm in the data that are compatible with m to the
total number of configurations over Fm that are compatible with m. To illustrate, consider
d.educate, which contains all configurations that are compatible with the two csf issued by
cna() and csf():

R> printCols <- c("condition", "consistency", "coverage", "exhaustiveness")

R> csf(cna(d.educate, details = "exhaust"))[printCols]

condition consistency coverage exhaustiveness

1 (L + G <-> E)*(U + D <-> L) 1 1 1

2 (U + D + G <-> E)*(U + D <-> L) 1 1 1

If, say, the first configuration in d.educate (viz. U∗D∗L∗G∗E) is not observed or removed—
as in d.educate[-1,]—, CNA still builds the same solutions (with perfect consistency and
coverage). In that case, however, the resulting csf are not exhaustively represented in the
data, for one configuration that is compatible with both csf is not contained therein.

R> csf(cna(d.educate[-1,], details = "exhaust"))[printCols]

condition consistency coverage exhaustiveness

1 (L + G <-> E)*(U + D <-> L) 1 1 0.875

2 (U + D + G <-> E)*(U + D <-> L) 1 1 0.875

In a sense, faithfulness is the complement of exhaustiveness. It is high when no or only
few configurations of the factors in Fm that are incompatible with m are in the data. More
specifically, faithfulness amounts to the ratio of the number of configurations over Fm in the
data that are compatible with m to the total number of configurations over Fm in the data.
The two csf resulting from d.educate also reach perfect faithfulness:

R> printCols <- c("condition", "consistency", "coverage", "faithfulness")

R> csf(cna(d.educate, details = "faithful"))[printCols]

condition consistency coverage faithfulness

1 (L + G <-> E)*(U + D <-> L) 1 1 1

2 (U + D + G <-> E)*(U + D <-> L) 1 1 1

https://cran.r-project.org/web/packages/cna/cna.pdf

28 cna: Configurational Causal Inference and Modeling

If we add a configuration that is not compatible with these csf, say, U∗D∗l∗G∗e and lower the
consistency threshold, the same solutions along with one other result—this time, however,
with non-perfect faithfulness scores.

R> csf(cna(rbind(d.educate,c(1,1,0,1,0)), con = .8, details = "f"))[printCols]

condition consistency coverage faithfulness

1 (L + G <-> E)*(U + D <-> L) 0.857 1 0.889

2 (U + D + G <-> E)*(E <-> L) 0.857 1 0.778

3 (U + D + G <-> E)*(U + D <-> L) 0.857 1 0.889

If both exhaustiveness and faithfulness are high, the configurations over Fm in the data are all
and only the configurations of the factors in Fm that are compatible with m. Low exhaustive-
ness and/or faithfulness, by contrast, means that the data do not contain many configurations
of the factors in Fm compatible with m and/or the data contain many configurations not
compatible with m. In general, solutions with higher exhaustiveness and faithfulness scores
are preferable over solutions with lower scores.

5.4. Coherence

Coherence is a measure for model fit that is custom-built for csf. It measures the degree to
which the asf combined in a csf cohere, that is, are instantiated together in the data rather
than independently of one another. Coherence is intended to capture the following intuition.
Suppose a csf entails that A is a sufficient cause of B, which, in turn, is entailed to be a
sufficient cause of C. Corresponding data δ should be such that the A − B link of that causal
chain and the B − C link are either both instantiated or both not instantiated in the cases
recorded in δ. By contrast, a case in δ such that, say, only the A − B link is instantiated but
the B −C link is not, pulls down the coherence of that csf. The more such non-cohering cases
are contained in δ, the lower the overall coherence score of the csf.

Coherence is more specifically defined as the ratio of the number of cases satisfying all asf
contained in a csf to the number of cases satisfying at least one asf in the csf. More formally,
let a csf contain asf1, asf2, . . . , asfn, coherence then amounts to (where | . . . |δ represents the
cardinality of the set of cases in δ satisfying the corresponding expression):

| asf1
∗asf2

∗ . . . ∗asfn |δ
| asf1 + asf2 + . . . + asfn |δ

To illustrate, we add a case of type U∗d∗L∗g∗e to d.educate. When applied to the resulting
data (d.edu.exp1), cna() and csf() issue two csf.

R> d.edu.exp1 <- rbind(d.educate, c(1,0,1,0,0))

R> printCols <- c("condition", "consistency", "coverage", "coherence")

R> csf(cna(d.edu.exp1, con = .8, details = "cohere"))[printCols]

condition consistency coverage coherence

1 (L + G <-> E)*(U + D <-> L) 0.875 1 0.889

2 (U + D + G <-> E)*(U + D <-> L) 0.875 1 0.889

Michael Baumgartner, Mathias Ambühl 29

In the added case, none of these two csf cohere, as only one of their component asf is satisfied.

Coherence is an additional parameter of model fit that allows for selecting among multiple
solutions: the higher the coherence score of a csf, the better the overall model fit.

5.5. Structural redundancies and partial structural redundancies

It is not only possible that Boolean expressions describing the behavior of single outcomes
contain redundant proper parts, but such expressions can themselves—as a whole—be redun-
dant in superordinate structures. For instance, when three asf are conjunctively concatenated
to asf 1

∗ asf 2
∗ asf 3 in the first step of stage 4 of the CNA algorithm (see section 4), it can

happen that asf 1
∗ asf 2

∗ asf 3 is logically equivalent to asf 1
∗ asf 2, meaning that asf 3 makes

no difference to accounting for the behavior of the outcomes in that structure and is, thus,
redundant. We speak of a structural redundancy in that context (for a detailed discussion see
Baumgartner and Falk 2023b).

This type of redundancy is best introduced with a concrete example. Consider the following
complex MINUS-formula:

(A∗B + C ↔ D) ∗ (a + c ↔ E) (5)

(5) represents a causal structure such that A∗B and C are two alternative causes of D and
a and c are two alternative causes of E. That is, the presence of A and C is relevant to D

and their absence is relevant to E. A possible interpretation of these factors might be the
following. Suppose a city has two power stations: a wind farm and a nuclear plant. Let A

express that the wind farm is operational and C that the nuclear plant is operational and
let operationality be sufficient for a nuclear plant to produce electricity, while a wind farm
produces electricity provided it is operational and there is wind (B). Hence, the wind farm
being operational while it is windy or the nuclear plant being operational (A∗B + C) are two
alternative causes of the city being power supplied (D). Whereas the wind farm or the nuclear
plant not being operational (a + c) are two alternative causes of an alarm being triggered
(E).

The following data (dat.redun) comprise all and only the configurations that are compatible
with (5):

R> (dat.redun <- ct2df(selectCases("(A*B + C <-> D)*(a + c <-> E)")))

A B C D E

2 0 1 1 1 1

4 0 0 1 1 1

5 1 1 0 1 1

14 0 1 0 0 1

15 1 0 0 0 1

16 0 0 0 0 1

17 1 1 1 1 0

19 1 0 1 1 0

The problem now is that dat.redun does not only entail the two asf contained in (5), viz.

30 cna: Configurational Causal Inference and Modeling

(6) and (7), but also a third one, viz. (8):

A∗B + C ↔ D (6)

a + c ↔ E (7)

a∗D + e ↔ C (8)

That means the behavior of C, which is exogenous in the data-generating structure (5),
can be expressed as a redundancy-free Boolean function of its two effects D and E. (8),
hence, amounts to an upstream (or backtracking) asf, which, obviously, must not be causally
interpreted. Indeed, when (8) is embedded in the superordinate dependency structure (9) that
results from a conjunctive concatenation of all asf that follow from dat.redun, it turns out
that (8) is redundant. The reason is that (9) has a proper part which is logically equivalent
to (9), namely (5).

(A∗B + C ↔ D) ∗ (a + c ↔ E) ∗ (a∗D + e ↔ C) (9)

(9) and (5) state exactly the same about the behavior of the factors in dat.redun, meaning
that (8) makes no difference to that behavior over and above (6) and (7). By contrast, neither
(6) nor (7) can be eliminated from (9) such that the remaining expression is logically equivalent
to (9). Both of these downstream asf make their own distinctive difference to the behavior
of the factors in dat.redun. The upstream asf (8), however, is a structural redundancy in
(9). (9) must not be causally interpreted because it is not a complex MINUS-formula (see p.
8 above).

Accordingly, in its default setting, the csf() function, which performs stage 4 of the CNA
algorithm, removes all structurally redundant asf from conjunctions of asf ; that is, when
applied to dat.redun it returns (5), not (9):

R> printCols <- c("condition", "consistency", "coverage", "inus", "redundant")

R> csf(cna(dat.redun, details = "r"))[printCols]

condition consistency coverage inus redundant

1 (C + A*B <-> D)*(a + c <-> E) 1 1 TRUE FALSE

In previous versions (< 3.0) of the cna package, structurally redundant asf were not automat-
ically removed but only marked by means of the solution attribute redundant. The solutions
with redundant = TRUE then had to be further processed by the function minimalizeCsf().
To reproduce that old behavior, csf() now has an additional argument minimalizeCsf,
which defaults to TRUE. If set to FALSE, structural redundancies are not automatically elim-
inated. Accordingly, the following call returns (9) and marks it as containing a structural
redundancy—and thus as not having (M)INUS form:

R> csf(cna(dat.redun, details = "r"), inus.only = FALSE,

+ minimalizeCsf = FALSE)[printCols]

condition consistency coverage

1 (e + a*D <-> C)*(C + A*B <-> D)*(a + c <-> E) 1 1

inus redundant

1 FALSE TRUE

Michael Baumgartner, Mathias Ambühl 31

As csf with redundant = TRUE must never be causally interpreted, the setting minimalizeCsf

= FALSE is deprecated. It is mainly kept in the package for backwards compatibility and de-
veloping purposes. Correspondingly, the solution attribute redundant is no longer relevant,
as cna() and csf() no longer output csf with structural redundancies in the first place.

While structural redundancies of whole asf can occur in both deterministic and indetermin-
istic data, the latter type of data may induce yet another, but related, type of redundancy.
When data do not feature strict Boolean dependencies, building csf from the inventory of
asf recovered in stage 3 of the CNA algorithm may lead to the redundancy of proper parts
of asf —parts which are not redundant when those asf are considered in isolation. That
is, a complex structure can entail that one of its asf has a redundant proper part, which
redundancy, however, is not visible in the data. We call this a partial structural redundancy.

Again, a concrete example helps to clarify the problem. Consider the solutions resulting from
the following analysis of data d.autonomy:

R> printCols <- c("condition", "consistency", "coverage", "inus")

R> csf(cna(d.autonomy, ordering = "AU", con = .9, cov = .94,

+ maxstep = c(2, 2, 8), inus.only = FALSE))[printCols]

condition consistency coverage inus

1 (SP*RE + CO*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 TRUE

2 (SP*co + CO*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 TRUE

3 (SP*RE + ci*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 FALSE

4 (SP*RE + CO*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 TRUE

5 (SP*co + CO*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 TRUE

6 (SP*RE + ci*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 FALSE

Solution #3 in that list logically entails (10):

(SP ∗RE + ci∗cn ↔ EM) ∗ (ci + EM ↔ SP) (10)

That is, if the behavior of EM is regulated by the first asf in solution #3 and (10), co in
#3—for pure logical reasons—cannot make a difference to SP and, hence, is redundant. That
partial structural redundancy, however, is not visible in the data d.autonomy where EM alone
(i.e. without co) is not sufficient for SP with consistency 0.9, which is the threshold chosen
for the above analysis:

R> condTbl("EM -> SP", fsct(d.autonomy))

outcome condition consistency coverage complexity

1 SP EM -> SP 0.891 0.863 1

Hence, the data suggest that co makes a difference to SP , to the effect that meeting con = 0.9
for all msc requires EM∗co (and not EM alone) to be treated as cause of SP . At the same
time, that (10) logically follows from solution #3 implies that it is logically excluded that
co is a difference-maker of SP in the context of solution #3. The result is a contradiction:
the data call for including co as cause of SP , whereas the structure inferred from that data
entails not to include co.

32 cna: Configurational Causal Inference and Modeling

The case of solution #6 is analogous. Solution #6 not only entails (10) but is logically
equivalent to it. The upshot is the same: the data determine that some causal relevance
relation obtains, which is logically excluded by the very structure inferred from the data.
Such inconsistencies cannot be resolved by modifying solutions #3 and #6; rather, these
solutions are not, and cannot be transformed into, well-formed MINUS-formulas that would
meet con. They must be eliminated from the output. This is exactly what happens if cna()

and csf() are run with the default inus.only = TRUE:

R> csf(cna(d.autonomy, ordering = "AU", con = .9, cov = .94,

+ maxstep = c(2, 2, 8), inus.only = TRUE))[printCols]

condition consistency coverage inus

1 (SP*RE + CO*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 TRUE

2 (SP*co + CO*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 TRUE

3 (SP*RE + CO*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 TRUE

4 (SP*co + CO*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 TRUE

In sum, as of version 3.0 of the cna package, both structural and partial structural redun-
dancies are automatically resolved and eliminated. The functions cna() and csf() now
exclusively output MINUS-formulas (i.e. INUS solutions).

5.6. Cycles

Detecting causal cycles is one of the most challenging tasks in causal data analysis—in all
methodological traditions. One reason is that factors in a cyclic structure are so highly inter-
dependent that, even under optimal discovery conditions, the diversity of (observational) data
tends to be too limited to draw informative conclusions about the data-generating structure.
Various methods in fact assume that analyzed data-generating structures are acyclic (most
notably, Bayes nets methods, cf. Spirtes et al. 2000).

cna() and csf() output cyclic csf if they fit the data and the optional solution attribute
cyclic identifies those csf that contain a cyclic substructure. A causal structure has a cyclic
substructure if, and only if, it contains a directed causal path from at least one cause back to
itself. The MINUS theory spells this criterion out more explicitly as follows:

Cycle A complex MINUS-formula m has a cyclic substructure if, and only if, m contains a
sequence 〈Z1, Z2, . . . , Zn〉 such that every Zi is contained in an atomic MINUS-formula
of Zi+1 and Z1 = Zn in m.

To illustrate, the csf inferred from the d.autonomy data in the previous section contain
the cyclic sequence 〈SP, EM, SP 〉 and, thus, represent causal cycles. Typically, when cyclic
models fit the data, the output of cna() and csf() is very ambiguous. Therefore, if there
are independent reasons to assume that the data are not generated by a cyclic structure,
both cna() and csf() have the argument acyclic.only, which, if set to its non-default
value TRUE, prevents solutions with cycles from being returned and, thereby, reduces model
ambiguities. For example, by switching acyclic.only from FALSE to TRUE in the following
analysis, the solution space is reduced from 31 to 9:

R> csf(cna(d.irrigate, con = .77, cov = .77, acyclic.only = F)) |> nrow()

Michael Baumgartner, Mathias Ambühl 33

[1] 31

R> csf(cna(d.irrigate, con = .77, cov = .77, acyclic.only = T)) |> nrow()

[1] 9

The cycle.type argument—also available in both cna() and csf()—controls whether a
cyclic sequence 〈Z1, Z2, . . . , Zn〉 is composed of factors (cycle.type = "factor"), which
is the default, or factor values (cycle.type = "value"). To illustrate, if cycle.type =

"factor", (11) counts as cyclic:

(A + B ↔ C) ∗ (c + D ↔ A) (11)

The factor A (with value 1) appears in an asf of C (i.e. C=1), and the factor C (with value 0)
appears in an asf of A. But if cycle.type = "value", (11) does not pass as cyclic. Although
A appears in an asf of C=1, that same value of C does not appear in an asf of A; rather,
C=0 appears in the asf of A.

The function behind the solution attribute cyclic and behind the corresponding cna() ar-
guments is also available as stand-alone function cyclic() (see the cna reference manual for
details).

5.7. Plotting the output

MINUS-formulas can be visualized as causal hypergraphs, which are related to directed acyclic
graphs (DAGs; Greenland et al. 1999; Spirtes et al. 2000), the most widely used tool for visu-
alizing causal structures. But while edges in DAGs connect exactly two nodes, indicating the
direction of causation, edges in hypergraphs can connect more than two nodes and, thereby,
represent more than just the direction of causation. Causal hypergraphs can merge nodes into
bundles and then connect these bundles to other nodes. This allows for representing conjunc-
tive and disjunctive groupings of causes and, accordingly, for capturing the causal complexity
encoded in MINUS-formulas. Furthermore, while DAGs are assumed not to contain cycles,
causal hypergraphs may include cycles to accommodate the fact that MINUS-formulas may
express causal feedback structures.

For convenience, we use the acronym CHG to refer to causal hypergraphs. A CHG is a pair
(F, E), where F is a set of nodes and E is a set of ordered pairs of subsets of F. Each of
these ordered pairs 〈A, B〉 ∈ E is called an edge, more specifically, an edge directed from
A to B. The subset A is called the tail of the edge, B is its head. The heads of edges in
CHGs representing MINUS-formulas are always singleton sets, whereas their tails can contain
multiple elements. Just as in DAGs, edges in CHGs represent the relation of direct causal
relevance. But while nodes in DAGs represent factors or variables such as A and B, the nodes
in CHGs represent factor values such as A and b. Hence, DAGs represent causal relationships
between factors or variables, whereas CHGs represent causal relationships between factor
values.

There are two types of CHGs: set-CHGs for causal structures involving values of crisp-set
or fuzzy-set factors and mv-CHGs for structures of multi-value factors. Besides nodes and
directed edges, set-CHGs contain two further graphical elements: “•” for bundling nodes in
a conjunction and “�” at tails of edges for negating factor values. Mv-CHGs also symbolize

https://cran.r-project.org/web/packages/cna/cna.pdf

34 cna: Configurational Causal Inference and Modeling

C

D

E

A B

(a)

E

1

A

1

B

2

G

1

1

1

C

0

D

2

F

1

0

(b)

Figure 3: (a) is the causal hypergraph produced by plot(ana.dat.redun). (b) is the output
of causalHyperGraph("(A=1*B=2 + C=0*D=2 <-> E=1)*(E=1 + F=0 <-> G=1)").

conjunction through “•”, but instead of a negation sign, they feature numeric values directly
assigned to the tails and heads of edges indicating the factor values that are connected by
the edge. In both set- and mv-CHGs, edges with the same head form a disjunction. Figure
3a features an example of a set-CHG, and Figure 3b an example of an mv-CHG.

The R package causalHyperGraph provides functions to visualize the output of cna() as
CHGs. The most basic plotting function is plot(x), which takes a solution object x of cna()

as input an draws the solution formulas contained in x as CHGs. For example, the following
code draws the CHGs in Figure 3a from the csf inferred from the dat.redun data (see p. 29
above):

R> library(causalHyperGraph)

R> ana.dat.redun <- cna(dat.redun)

R> plot(ana.dat.redun)

There is also a function causalHyperGraph(x) that takes a character vector x expressing
MINUS-formulas as input and draws the corresponding CHGs. To illustrate, the CHG in
Figure 3b is drawn as follows:

R> causalHyperGraph("(A=1*B=2 + C=0*D=2 <-> E=1)*(E=1 + F=0 <-> G=1)")

6. Interpreting the output

The ultimate output of cna() and csf() is a set csfO of csf —which may be identical to asf,
if the data comprise only one endogenous factor. The causal inferences that are warranted
based on the data input x relative to the chosen con and cov thresholds and the provided
outcome, ordering, and maxstep have to be read off that set csfO. This section explains
this final interpretative step of a CNA analysis.

There are three possible types of outputs:

https://cran.r-project.org/package=causalHyperGraph

Michael Baumgartner, Mathias Ambühl 35

1. csfO contains no csf (and, correspondingly, no asf);

2. csfO contains exactly one csf (and, correspondingly, exactly one asf for each endogenous
factor);

3. csfO contains more than one csf (and, correspondingly, more than one asf for at least
one endogenous factor).

6.1. No solution

As indicated in section 3.4, a null result can have two sources: either the data are too noisy
to render the chosen con and cov thresholds satisfiable or the selected maxstep is too low. If
increasing maxstep does not yield solutions at the chosen con and cov thresholds, the latter
may be lowered, preferably with a concomitant robustness analysis as described in section
3.2. If no solutions are recovered at con = cov = .7, the data are too noisy to warrant
reliable causal inferences. Users are then advised to go back to the data and follow standard
guidelines (known from other methodological frameworks) to improve data quality, e.g. by
integrating further relevant factors into the analysis, enhancing the control of unmeasured
causes, expanding the population of cases or disregarding inhomogeneous cases, correcting
for measurement error, supplying missing values, etc.

It must be emphasized again (see section 2.4) that, under normal circumstances, an empty
csfO does not warrant the conclusion that the factors contained in the data input x are
causally irrelevant to one another. The inference to causal irrelevance is much more demand-
ing than the inference to causal relevance. A null result only furnishes evidence for causal
irrelevance if there are independent reasons to assume that all potentially relevant factors are
measured in x and that x exhausts the space of empirically possible configurations.

6.2. A unique solution

That csfO contains exactly one csf is the optimal completion of a CNA analysis. It means
that the data input x contains sufficient evidence for a determinate causal inference. The
factor values on the left-hand sides of “↔” in the asf constituting that csf can be interpreted
as causes of the factor values on the right-hand sides. Moreover, their conjunctive, disjunctive,
and sequential groupings reflect the actual properties of the data-generating causal structure.

Plainly, as with any other method of causal inference, the reliability of CNA’s causal conclu-
sions essentially hinges on the quality of the processed data. If the data satisfy homogeneity
(see section 2.4), a unique solution is guaranteed to correctly reflect the data-generating
structure. With increasing data deficiencies (noise, measurement error, etc.), the (inductive)
risk of committing causal fallacies inevitably increases as well. For details on the degree to
which the reliability of CNA’s causal conclusions decreases with increasing data deficiencies
see (Baumgartner and Ambühl 2020) and (Parkkinen and Baumgartner 2023).

6.3. Multiple solutions

If csfO has more than one element, the processed data underdetermine their own causal
modeling. That means the evidence contained in the data is insufficient to determine which
of the solutions contained in csfO corresponds to the data-generating causal structure. An
output set of multiple solutions {csf1, csf2, ..., csfn} is to be interpreted disjunctively: the

36 cna: Configurational Causal Inference and Modeling

data-generating causal structure is

csf1 OR csf2 OR ... OR csfn

but, based on the evidence contained in the data, it is ambiguous which disjunct is actually
operative.

That empirical data underdetermine their own causal modeling is a very common phenomenon
in all methodological traditions (Simon 1954; Spirtes et al. 2000, 59-72; Kalisch et al. 2012;
Eberhardt 2013; Baumgartner and Thiem 2017). But while some methods are designed
to automatically generate all fitting models, e.g. Bayes nets methods and configurational
comparative methods, other methods rely on search heuristics that zoom in on one best fitting
model only, e.g. logic regression or regression analytic methods, more generally. Whereas
model ambiguities have long been a thoroughly investigated topic in certain traditions, such as
Bayes nets methods, they are only beginning to be studied in the literature on configurational
comparative methods.

CNA—on a par with any other method—cannot disambiguate what is empirically underde-
termined. Rather, it draws those and only those causal conclusions for which the data de facto
contain evidence. In cases of empirical underdetermination it therefore renders transparent
all data-fitting models and leaves the disambiguation up to the analyst.

That cna() and csf() issue multiple solutions for some data input x does not necessarily mean
that x is deficient. In fact, even data that are ideal by all quality standards of configurational
causal modeling can give rise to model ambiguities. The following simulates a case in point:

R> dat7 <- selectCases("a*B + A*b + B*C <-> D")

R> printCols <- c("condition", "consistency", "coverage", "inus",

+ "exhaustiveness")

R> csf(cna(dat7, details = c("exhaust", "inus")))[printCols]

condition consistency coverage inus exhaustiveness

1 a*B + A*b + A*C <-> D 1 1 TRUE 1

2 a*B + A*b + B*C <-> D 1 1 TRUE 1

dat7 induces perfect consistency and coverage scores and is free of fragmentation; it contains
all and only the configurations that are compatible with the target structure, which accord-
ingly is exhaustively and faithfully reflected in dat7. Nonetheless, two models can be inferred.
The causal structures expressed by these two models generate the exact same data, meaning
they are empirically indistinguishable.

Although, a unique solution is more determinate and, thus, preferable to multiple solutions,
the fact that cna() and csf() generate multiple equally data-fitting models is not generally
an uninformative result. In the above example, both models feature a∗B + A∗b. That is, the
data contain enough evidence to establish the joint relevance of a∗B and of A∗b for D (on
alternative paths). What is more, it can be conclusively inferred that D has a further complex
cause, viz. either A∗C or B∗C. It is merely an open question which of these candidate causes
is actually operative.

That different model candidates have some msc in common is a frequent phenomenon. Here’s
a real-life example, where two alternative causes, viz. C=1 + F =2, are present in all solutions:

Michael Baumgartner, Mathias Ambühl 37

R> csf(cna(d.pban, cov = .95, maxstep = c(3, 5, 10)))["condition"]

condition

1 C=1 + F=2 + C=0*F=1 + C=2*V=0 <-> PB=1

2 C=1 + F=2 + C=0*T=2 + C=2*V=0 <-> PB=1

3 C=1 + F=2 + C=2*F=0 + C=0*F=1 + F=1*V=0 <-> PB=1

4 C=1 + F=2 + C=2*F=0 + C=0*T=2 + F=1*V=0 <-> PB=1

5 C=1 + F=2 + C=0*F=1 + C=2*T=1 + T=2*V=0 <-> PB=1

6 C=1 + F=2 + C=0*F=1 + T=1*V=0 + T=2*V=0 <-> PB=1

7 C=1 + F=2 + C=0*T=2 + C=2*T=1 + T=2*V=0 <-> PB=1

8 C=1 + F=2 + C=0*T=2 + T=1*V=0 + T=2*V=0 <-> PB=1

Such commonalities can be reported as conclusive results.

Moreover, even though multiple solutions do not permit pinpointing the causal structure
behind an outcome, they nonetheless allow for constraining the range of possibilities. In a
context where the causes of some outcome are unknown it amounts to a significant gain of
scientific insight when a study can show that the structure behind that outcome has one of a
small number of possible forms, even if it cannot determine which one exactly.

However, the larger the amount of data-fitting solutions and the lower the amount of com-
monalities among them, the lower the overall informativeness of a CNA output. Indeed, if
data fragmentation is high, meaning if there are many unobserved possible configurations, the
ambiguity ratio in configurational causal modeling can reach dimensions where nothing at all
can be concluded about the data-generating structure any more. Hence, a highly ambiguous
result is on a par with a null result. A telling example of this sort is d.volatile which was
discussed in section 3.4 above (cf. also Baumgartner and Thiem 2017).

As the problem of model ambiguities is still under-investigated in the CNA literature, there
do not yet exit conventionalized guidelines for how to proceed in cases of ambiguities. The
model fit scores and solution attributes reported in the output objects of cna() and csf()

often provide some leverage to narrow down the space of model candidates. For instance, if,
in a particular discovery context, there is reason to assume that data have been collected as
exhaustively as possible, to the effect that most configurations compatible with an investigated
causal structure should be contained in the data, the model space may be restricted to csf
with a high score on exhaustiveness. By way of example, for d.pban a total of 14 csf are
built at cov = .95:

R> ana.ban.1 <- cna(d.pban, cov = .95, maxstep = c(6, 6, 10), details = T)

R> csf.ban.1 <- csf(ana.ban.1)

R> length(csf.ban.1$condition)

[1] 14

If only csf with exhaustiveness >= .85 are considered, the amount of candidate csf is
reduced to 2:

R> csf.ban.1.ex <- subset(csf.ban.1, exhaustiveness >= .85)

R> length(csf.ban.1.ex$condition)

38 cna: Configurational Causal Inference and Modeling

[1] 2

To also resolve this final ambiguity, complexity may be brought to bear. Among equally
data-fitting models the less complex ones are generally preferable because they are less likely
to be overfitted and make less causal claims, resulting in a lower error risk. In the above
example, if complexity is required to be as low as possible, only one model remains:

R> subset(csf.ban.1.ex, complexity == min(csf.ban.1.ex$complexity))

outcome condition consistency coverage

1 PB=1 C=1 + F=2 + C=0*F=1 + C=2*V=0 <-> PB=1 1 0.952

complexity inus exhaustiveness faithfulness coherence redundant cyclic

1 6 TRUE 0.889 0.941 1 FALSE FALSE

Clearly though, the fit parameters and solution attributes provided by cna() and csf() will
not always provide a basis for complete ambiguity elimination The evidence contained in
data may simply be insufficient to draw determinate causal conclusions. Maybe background
theories or case knowledge can be brought to bear to select among the model candidates (see
section 6.4). Nevertheless, the most important course of action in the face of ambiguities is to
render them transparent. By default, readers of CNA publications should be informed about
the degree of ambiguity. Full transparency with respect to model ambiguities, first, allows
readers to determine for themselves how much confidence to have in the conclusions drawn
in a study, and second, paves the way for follow-up studies that are purposefully designed to
resolve previously encountered ambiguities.

6.4. “Back to the cases”

When CNA is applied to small- or intermediate-N data, researchers may be familiar with
some or all of the cases in their data. For instance, they may know that in a particular case
certain causes of an outcome are operative while others are not. Or they may know why
certain cases are outliers or why others feature an outcome but none of the potential causes.
A proper interpretation of a CNA result may therefore require that the performance of the
obtained models be assessed on the case level and against the background of the available
case knowledge.

The function that facilitates the evaluation of recovered msc, asf, and csf on the case level is
condition(x, ct). Its first input is a character vector x specifying Boolean expressions—
typically asf or csf —and its second input a data frame or configuration table ct. In case of
cs or mv data, the output of condition() then highlights in which cases x is instantiated,
whereas for fs data, the output lists relevant membership scores in exogenous and endogenous
factors. Moreover, if x is an asf or csf, condition() issues their consistency and coverage
scores.

To illustrate, we re-analyze d.autonomy:

R> dat.aut.2 <- d.autonomy[15:30, c("AU","EM","SP","CO","RE","DE")]

R> ana.aut.3 <- cna(dat.aut.2, outcome = c("EM","AU"), con = .91, cov = .91)

R> condition(csf(ana.aut.3)$condition, dat.aut.2)

Michael Baumgartner, Mathias Ambühl 39

That function call returns a list of three tables, each corresponding to one of the three csf
contained in ana.aut.3 and breaking down the relevant csf to the case level by contrasting
the membership scores in the left-hand and right-hand sides of the component asf. A case
with a higher left-hand score is one that pulls down consistency, whereas a case with a higher
right-hand score pulls down coverage. For each csf, condition() moreover returns overall
consistency and coverage scores as well as consistency and coverage scores for the component
asf.

The three csf in ana.aut.3 differ only in regard to their component asf for outcome AU . The
function group.by.outcome(condlst), which takes an output object condlst of condition()

as input, lets us more specifically compare these different asf with respect to how they fare
on the case level.

R> group.by.outcome(condition(asf(ana.aut.3)$condition, dat.aut.2))$AU

SP EM*RE+re*DE EM*RE+CO*DE AU | n.obs

ENacg1 1.0 1.0 1.0 1.0 | 1

ENacg2 0.6 0.4 0.4 0.4 | 1

ENacg3 0.8 0.6 0.9 0.8 | 1

ENacg4 0.6 1.0 1.0 1.0 | 1

ENacg5 0.4 0.4 0.4 0.4 | 1

ENacg6 0.6 0.7 0.7 0.6 | 1

ENacg7 1.0 0.8 0.8 1.0 | 1

ENacg8 1.0 1.0 1.0 1.0 | 1

ENacto1 0.4 0.4 0.6 0.4 | 1

ENacto2 0.4 0.4 0.4 0.4 | 1

ENacosa1 0.4 0.4 0.2 0.4 | 1

ENacosa2 0.4 0.4 0.4 0.2 | 1

ENacosa3 0.4 0.4 0.4 0.6 | 1

ENacat1 0.4 0.4 0.4 0.2 | 1

ENacat2 0.4 0.4 0.4 0.6 | 1

ENacat3 0.4 0.6 0.4 0.4 | 1

The first three columns of that table list the membership scores of each case in the left-
hand sides of the asf, and the fourth column reports the membership scores in AU . The
table shows that the first asf (SP ↔ AU) outperforms the other asf in cases ENacg3/6/7,
ENacto1, ENacosa1, and ENacat3, while it is outperformed by another asf in cases ENacg2
and ENacg4. In all other cases, the three solution candidates fare equally. If prior knowledge is
available about some of these cases, this information can help to choose among the candidates.
For instance, if it is known that there are no other factors operative in case ENacg7 than
the ones contained in dat.aut.2, it follows that ENacg7’s full membership in AU must be
brought about by SP—which, in turn, disqualifies the other solutions. By contrast, if the
absence of other relevant factors can be assumed for case ENacg4, the asf featuring SP as
cause of AU is disqualified.

40 cna: Configurational Causal Inference and Modeling

7. Benchmarking

Benchmarking the reliability of a method of causal inference is an essential element of method
development and validation. In a nutshell, it amounts to testing to what degree the bench-
marked method recovers the true data-generating structure ∆ or proper substructures of ∆
from data of varying quality. As ∆ is not normally known in real-life discovery contexts, the
reliability of a method cannot be assessed by applying it to real-life data. Instead, reliability
benchmarking is done in so-called inverse searches, which reverse the order of causal discovery
as it is commonly conducted in scientific practice. An inverse search comprises three steps:

(1) a data-generating causal structure ∆ is presupposed/drawn (as ground truth),

(2) artificial data δ is simulated from ∆, possibly featuring various deficiencies (e.g. noise,
fragmentation, measurement error etc.),

(3) δ is processed by the tested method in order to check whether its output meets the
tested reliability benchmark.

A benchmark test can measure various properties of a method’s output, for instance, whether
it is error-free, correct or complete, etc. As real-life data are often fragmented, methods for
MINUS discovery typically do not infer the complete ∆ from a real-life δ but only proper
substructures thereof (see section 2.4). Thus, since completeness is not CNA’s primary aim,
it should likewise not be the primary reliability benchmark for CNA; it is more important
that its output scores high on error-freeness and correctness.

CNA’s output, viz. the issued set csfO of csf, is error-free iff it does not entail a causal claim
that is false of the ground truth ∆ (i.e. no false positive). That can be satisfied in two ways:
either (i) csfO is empty, meaning no causal inferences are drawn, or (ii) csfO contains at
least one15 solution mi that is correct of ∆, which is the case iff mi is a submodel of ∆
(for details on the submodel relation see section 2.4). So, csfO satisfies the error-freeness
benchmark iff it satisfies conditions (i) or (ii). With increasing stringency, csfO can then be
said to be correct of ∆ iff condition (ii) is satisfied, meaning csfO actually contains at least
one solution mi that is a submodel of ∆, and thus correct. Finally, completeness measures
the informativeness of csfO, that is, the ratio of causal properties of ∆ captured and revealed
by the solutions in csfO.

The cna package provides many functionalities to conduct inverse searches that are tailor-
made to benchmark the output of cna() and csf(). The functions randomAsf() and
randomCsf() can be used to draw a data-generating structure ∆ in step (1). randomAsf(x)

generates a structure with a single outcome (i.e. a random asf) and randomCsf(x) an acyclic
multi-outcome structure (i.e. a random csf), where x is a data frame or configTable defin-
ing the factors and their possible values from which the structures are drawn. The function
selectCases(), which has already been discussed in section 3.1.2, can be employed to simu-
late data δ in the course of step (2). Finally, is.submodel(x, y) determines whether models
are related by the submodel relation, which, in turn, helps in assessing whether csfO is true
of ∆. is.submodel() takes a character vector x of asf as first input and tests whether the
elements of that vector are submodels of y, which, in turn, is a character string of length
1 representing the target asf (i.e. ∆). If ∆ is a csf with multiple outcomes, the function

15Recall from section 6.3 that an output containing multiple solutions is to be interpreted disjunctively; and
a disjunction of solutions is true iff at least one solution is true.

Michael Baumgartner, Mathias Ambühl 41

causal_submodel(x, y) from the frscore package should be used to determine whether x is
true of y. Moreover, the function identical.model(x, y) is available to check whether x

(which must have length 1) and y are identical.

Against that background, the following might be a core of a error-freeness benchmark test
that simulates multi-value data with 20% missing observations and 5% random noise (i.e.
cases incompatible with the ground truth), and that runs cna() and csf() at con = cov =
0.7 without giving the algorithm any prior causal information in an ordering or and outcome
specification.

R> # Draw a ground truth.

R> fullData <- allCombs(c(4,4,4,4,4))

R> groundTruth <- randomCsf(fullData, n.asf = 2, compl = 2)

R> # Generate ideal data for groundTruth.

R> idealData <- ct2df(selectCases(groundTruth, fullData))

R> # Introduce 20% fragmentation.

R> fragData <- idealData[-sample(1:nrow(idealData), nrow(idealData)*0.2),]

R> # Add 5% random noise (cases incompatible with ground truth).

R> incompCases <- dplyr::setdiff(fullData, idealData)

R> x <- rbind(incompCases[sample(1:nrow(incompCases),

+ nrow(fragData) * 0.05),], fragData)

R> # Run CNA without an ordering.

R> csfs <- csf(cna(x, con = .7, cov = .7, maxstep = c(3, 3, 12)))

R> # Check whether no causal error (no false positive) is returned.

R> if(length(csfs$condition)==0) {

+ TRUE } else {any(unlist(lapply(csfs$condition,

+ function(x) frscore::causal_submodel(x, groundTruth, fullData))))}

Every re-run of this code chunk generates a different ground truth and different data; in
some runs CNA passes the test, in others it does not. To determine CNA’s error-freeness
ratio under these test conditions, the above core must be embedded in a suitable test loop.
To estimate CNA’s overall error-freeness ratio, the test conditions should be systematically
varied by, for instance, varying the complexity of the ground truth, the degree of fragmen-
tation and noise, the consistency and coverage thresholds, or by drawing the noise with a
bias or supplying CNA with more or less prior causal information via an outcome specifi-
cation or an ordering. Correctness and completeness tests can be designed analogously, by
suitably modifying the last line that evaluates the solution object csfs. For single-outcome
structures (asf), benchmark tests with some of the above variations have been conducted in
(Baumgartner and Ambühl 2020) and (Baumgartner and Falk 2023a); corresponding tests for
multi-outcome structures (csf) have been carried out in (Parkkinen and Baumgartner 2023).

8. Summary

This vignette introduced the theoretical foundations as well as the main functions of the cna R

package for configurational causal inference and modeling with Coincidence Analysis (CNA).
Moreover, we explained how to interpret the output of CNA, provided some guidance for how
to use various model fit parameters for the purpose of ambiguity reduction, and supplied a
benchmarking template.

https://cran.r-project.org/package=frscore

42 cna: Configurational Causal Inference and Modeling

CNA is currently the only method searching for (M)INUS causation in data that builds multi-
outcome models and, hence, not only orders causes conjunctively and disjunctively but also
sequentially. Moreover, it builds causal models on the basis of a bottom-up algorithm that
is unique among configurational comparative methods and gives CNA an edge over other
methods in guaranteeing the redundancy-freeness of its models, which, in turn, is crucial for
their causal interpretability. Overall, CNA constitutes a powerful methodological alternative
for researchers interested in causal structures affected by conjunctivity and disjunctivity. The
cna package makes that inferential power available to end-users.

Acknowledgments

We are grateful to Alrik Thiem, Martyna Swiatczak, Jonathan Freitas, and Luna De Souter
for helpful comments on earlier drafts of this vignette, and we thank the Toppforsk-program
of the Trond Mohn Foundation and the University of Bergen (grant nr. 811886), the Research
Council of Norway (grant nr. 326215), and the Swiss National Science Foundation (grant nr.
PP00P1_144736/1) for generous support of the research behind the cna package over the
years.

References

Albert DZ (1992). Quantum Mechanics and Experience. Harvard University Press, Cam-
bridge.

Ambühl M, Baumgartner M (2022). cnaOpt: Optimizing Consistency and Coverage in Con-
figurational Causal Modeling. R Package Version 0.5.2. https://cran.r-project.org/

package=cnaOpt.

Baumgartner M (2009a). “Inferring Causal Complexity.” Sociological Methods & Research,
38, 71–101.

Baumgartner M (2009b). “Uncovering Deterministic Causal Structures: A Boolean Ap-
proach.” Synthese, 170, 71–96.

Baumgartner M (2013). “A Regularity Theoretic Approach to Actual Causation.” Erkenntnis,
78, 85–109.

Baumgartner M (2015). “Parsimony and Causality.” Quality & Quantity, 49, 839–856.

Baumgartner M (2020). “Causation.” In D Berg-Schlosser, B Badie, L Morlino (eds.), The
SAGE Handbook of Political Science, pp. 305–321. SAGE, London.

Baumgartner M, Ambühl M (2020). “Causal Modeling with Multi-Value and Fuzzy-
Set Coincidence Analysis.” Political Science Research and Methods, 8, 526–542. doi:

10.1017/psrm.2018.45.

Baumgartner M, Ambühl M (2021). “Optimizing Consistency and Coverage in Configu-
rational Causal Modeling.” Sociological Methods & Research, 52(3), 1288–1320. doi:

10.1177/0049124121995554.

https://cran.r-project.org/package=cnaOpt
https://cran.r-project.org/package=cnaOpt
https://doi.org/10.1017/psrm.2018.45
https://doi.org/10.1017/psrm.2018.45
https://doi.org/10.1177/0049124121995554
https://doi.org/10.1177/0049124121995554

Michael Baumgartner, Mathias Ambühl 43

Baumgartner M, Falk C (2023a). “Configurational Causal Modeling and Logic Regression.”
Multivariate Behavioral Research, 58(2), 292–310. doi:10.1080/00273171.2021.1971510.

Baumgartner M, Falk C (2023b). “Boolean Difference-Making: A Modern Regularity Theory
of Causation.” The British Journal for the Philosophy of Science, 74(1), 171–197. doi:

10.1093/bjps/axz047.

Baumgartner M, Thiem A (2017). “Model Ambiguities in Configurational Comparative Re-
search.” Sociological Methods & Research, 46(4), 954–987.

Baumgartner M, Thiem A (2020). “Often Trusted But Never (Properly) Tested: Evaluating
Qualitative Comparative Analysis.” Sociological Methods & Research, 49, 279–311. doi:

10.1177/0049124117701487.

Beirlaen M, Leuridan B, Van De Putte F (2018). “A Logic For the Discovery of Deterministic
Causal Regularities.” Synthese, 195(1), 367–399. doi:10.1007/s11229-016-1222-x.

Bowran AP (1965). A Boolean Algebra. Abstract and Concrete. Macmillan, London.

Brambor T, Clark WR, Golder M (2006). “Understanding Interaction Models: Improving
Empirical Analyses.” Political Analysis, 14(1), 63–82. doi:10.1093/pan/mpi014.

Braumoeller B (2015). QCAfalsePositive: Tests for Type I Error in Qualitative Compara-
tive Analysis (QCA). R package version 1.1.1, https://CRAN.R-project.org/package=

QCAfalsePositive.

Cronqvist L, Berg-Schlosser D (2009). “Multi-Value QCA (mvQCA).” In B Rihoux, CC Ragin
(eds.), Configurational Comparative Methods: Qualitative Comparative Analysis (QCA)
and Related Techniques, pp. 69–86. Sage Publications, London.

Csikszentmihalyi M (1975). Beyond Boredom and Anxiety. Jossey-Bass Publishers, San
Francisco.

Culverhouse R, Suarez BK, Lin J, Reich T (2002). “A Perspective on Epistasis: Limits of
Models Displaying No Main Effect.” The American Journal of Human Genetics, 70(2),
461–471. doi:10.1086/338759.

De Souter L (2024). “Evaluating Boolean Relationships in Configurational Comparative
Methods.” Journal of Causal Inference, 12(1). doi:10.1515/jci-2023-0014.

Dusa A (2024). QCA: A Package for Qualitative Comparative Analysis. R Package Version
3.22. https://cran.r-project.org/package=QCA.

Eberhardt F (2013). “Experimental Indistinguishability of Causal Structures.” Philosophy of
Science, 80(5), 684–696.

Graßhoff G, May M (2001). “Causal Regularities.” In W Spohn, M Ledwig, M Esfeld (eds.),
Current Issues in Causation, pp. 85–114. Mentis, Paderborn.

Greenland S, Pear J, Robins JM (1999). “Causal Diagrams for Epidemiologic Research.”
Epidemiology, 10(1), 37–48.

https://doi.org/10.1080/00273171.2021.1971510
https://doi.org/10.1093/bjps/axz047
https://doi.org/10.1093/bjps/axz047
https://doi.org/10.1177/0049124117701487
https://doi.org/10.1177/0049124117701487
https://doi.org/10.1007/s11229-016-1222-x
https://doi.org/10.1093/pan/mpi014
https://CRAN.R-project.org/package=QCAfalsePositive
https://CRAN.R-project.org/package=QCAfalsePositive
https://doi.org/10.1086/338759
https://doi.org/10.1515/jci-2023-0014
https://cran.r-project.org/package=QCA

44 cna: Configurational Causal Inference and Modeling

Hájek P (1998). Metamathematics of Fuzzy Logic. Kluwer, Dordrecht.

Hume D (1999 (1748)). An Enquiry Concerning Human Understanding. Oxford University
Press, Oxford.

Kalisch M, Maechler M, Colombo D, Maathuis MH, Buehlmann P (2012). “Causal Inference
Using Graphical Models With the R Package pcalg.” Journal of Statistical Software, 47(11),
1–26.

Kooperberg C, Ruczinski I (2005). “Identifying Interacting SNPs Using Monte Carlo Logic
Regression.” Genetic Epidemiology, 28(2), 157–170. doi:10.1002/gepi.20042.

Kooperberg C, Ruczinski I (2023). LogicReg: Logic Regression. R package version 1.6.6.
https://CRAN.R-project.org/package=LogicReg.

Lemmon EJ (1965). Beginning Logic. Chapman & Hall, London.

Mackie JL (1974). The Cement of the Universe. A Study of Causation. Clarendon Press,
Oxford.

Oana IE, Medzihorsky J, Quaranta M, Schneider CQ (2023). SetMethods: Functions for
Set-Theoretic Multi-Method Research and Advanced QCA. R package version 4.0, https:

//CRAN.R-project.org/package=SetMethods.

Parkkinen VP, Baumgartner M (2023). “Robustness and Model Selection in Configurational
Causal Modeling.” Sociolocial Methods & Research, 52(1), 176–208.

Parkkinen VP, Baumgartner M (2024). frscore: Functions for Calculating Fit-Robustness
of CNA-solutions. R Package Version 0.4.0. https://CRAN.R-project.org/package=

frscore.

Ragin CC (2006). “Set Relations in Social Research: Evaluating Their Consistency and
Coverage.” Political Analysis, 14(3), 291–310.

Ragin CC (2008). Redesigning Social Inquiry: Fuzzy Sets and Beyond. University of Chicago
Press, Chicago.

Rihoux B, Ragin CC (eds.) (2009). Configurational Comparative Methods. Qualitative Com-
parative Analysis (QCA) and Related Techniques. Sage, Thousand Oaks.

Ruczinski I, Kooperberg C, LeBlanc M (2003). “Logic Regression.” Journal of Computational
and Graphical Statistics, 12(3), 475–511. doi:10.1198/1061860032238.

Schneider CQ, Wagemann C (2012). Set-Theoretic Methods: A User’s Guide for Qualitative
Comparative Analysis (QCA) and Fuzzy-Sets in the Social Sciences. Cambridge University
Press, Cambridge.

Schwender H, Tietz T (2024). logicFS: Identification of SNP Interactions. R package version
2.24.0. https://doi.org/doi:10.18129/B9.bioc.logicFS.

Simon HA (1954). “Spurious Correlation: A Causal Interpretation.” Journal of the American
Statistical Association, 49(267), 467–479.

https://doi.org/10.1002/gepi.20042
https://CRAN.R-project.org/package=LogicReg
https://CRAN.R-project.org/package=SetMethods
https://CRAN.R-project.org/package=SetMethods
https://CRAN.R-project.org/package=frscore
https://CRAN.R-project.org/package=frscore
https://doi.org/10.1198/1061860032238
https://doi.org/doi:10.18129/B9.bioc.logicFS

Michael Baumgartner, Mathias Ambühl 45

Spirtes P, Glymour C, Scheines R (2000). Causation, Prediction, and Search. 2 edition. MIT
Press, Cambridge.

Swiatczak MD (2021). “Different Algorithms, Different Models.” Quality & Quantity, 56(4),
1913–1937. doi:10.1007/s11135-021-01193-9.

Thiem A (2018). QCApro: Advanced Functionality for Performing and Evaluating Qualitative
Comparative Analysis. R Package Version 1.1-2. https://CRAN.R-project.org/package=

QCApro.

Thiem A, Duşa A (2013). Qualitative Comparative Analysis with R: A User’s Guide. Springer,
New York.

Whitaker RG, Sperber N, Birken S, Baumgartner M, Thiem A, Cragun D, Damschroder L,
Miech E, Slade A (2020). “Coincidence Analysis: A New Method for Causal Inference in Im-
plementation Science.” Implementation Science, 15. doi:10.1186/s13012-020-01070-3.

Yakovchenko V, Miech EJ, Chinman MJ, Chartier M, Gonzalez R, Kirchner JE, Morgan
TR, Park A, Powell BJ, Proctor EK, Ross D, Waltz TJ, Rogal SS (2020). “Strategy
Configurations Directly Linked to Higher Hepatitis C Virus Treatment Starts: An Applied
Use of Configurational Comparative Methods.” Medical Care, 58(5). doi:10.1097/MLR.

0000000000001296.

Affiliation:

Michael Baumgartner
University of Bergen
Department of Philosophy
Postboks 7805
5020 Bergen
Norway
E-mail: michael.baumgartner@uib.no

URL: https://m-baum.github.io

Mathias Ambühl
Consult AG Statistical Services
Tramstrasse 10
8050 Zürich
E-mail: mathias.ambuehl@consultag.ch

https://doi.org/10.1007/s11135-021-01193-9
https://CRAN.R-project.org/package=QCApro
https://CRAN.R-project.org/package=QCApro
https://doi.org/10.1186/s13012-020-01070-3
https://doi.org/10.1097/MLR.0000000000001296
https://doi.org/10.1097/MLR.0000000000001296
mailto:michael.baumgartner@uib.no
https://m-baum.github.io
mailto:mathias.ambuehl@consultag.ch

	Introduction
	Background
	Factors and their values
	Boolean operations
	(M)INUS causation
	Inferring MINUS causation from data

	The input of CNA
	Data
	Configuration tables
	Data simulations

	Consistency and coverage
	Outcome and ordering
	Maxstep
	Negated outcomes

	The CNA algorithm
	The output of CNA
	Customizing the output
	INUS vs. non-INUS solutions
	Exhaustiveness
	Coherence
	Structural redundancies and partial structural redundancies
	Cycles
	Plotting the output

	Interpreting the output
	No solution
	A unique solution
	Multiple solutions
	"Back to the cases"

	Benchmarking
	Summary

