GenHMM1d: Goodness-of-Fit for Zero-Inflated Univariate Hidden Markov Models

Inference, goodness-of-fit tests, and predictions for continuous and discrete univariate Hidden Markov Models (HMM), including zero-inflated distributions. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the p-value. The description of the methodology is taken from Nasri et al (2020) <doi:10.1029/2019WR025122>.

Version: 0.2.1
Depends: R (≥ 3.5.0), doParallel, parallel, foreach
Imports: ggplot2, stats, matrixcalc, reshape2, rmutil, VaRES, VGAM, EnvStats, GLDEX, GeneralizedHyperbolic, actuar, extraDistr, gamlss.dist, sgt, skewt, sn, ssdtools, stabledist
Published: 2025-03-13
Author: Bouchra R. Nasri [aut, cre, cph], Mamadou Yamar Thioub [aut, cph], Bruno N. Remillard [aut, cph]
Maintainer: Bouchra R. Nasri <bouchra.nasri at umontreal.ca>
License: GPL-3
NeedsCompilation: no
CRAN checks: GenHMM1d results

Documentation:

Reference manual: GenHMM1d.pdf

Downloads:

Package source: GenHMM1d_0.2.1.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-devel (arm64): not available, r-release (arm64): not available, r-oldrel (arm64): not available, r-devel (x86_64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available
Old sources: GenHMM1d archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=GenHMM1d to link to this page.