GenHMM1d: Goodness-of-Fit for Zero-Inflated Univariate Hidden Markov
Models
Inference, goodness-of-fit tests, and predictions for continuous and discrete univariate Hidden Markov Models (HMM), including zero-inflated distributions. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the p-value. The description of the methodology is taken from Nasri et al (2020) <doi:10.1029/2019WR025122>.
Version: |
0.2.1 |
Depends: |
R (≥ 3.5.0), doParallel, parallel, foreach |
Imports: |
ggplot2, stats, matrixcalc, reshape2, rmutil, VaRES, VGAM, EnvStats, GLDEX, GeneralizedHyperbolic, actuar, extraDistr, gamlss.dist, sgt, skewt, sn, ssdtools, stabledist |
Published: |
2025-03-13 |
Author: |
Bouchra R. Nasri [aut, cre, cph],
Mamadou Yamar Thioub [aut, cph],
Bruno N. Remillard [aut, cph] |
Maintainer: |
Bouchra R. Nasri <bouchra.nasri at umontreal.ca> |
License: |
GPL-3 |
NeedsCompilation: |
no |
CRAN checks: |
GenHMM1d results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=GenHMM1d
to link to this page.