BayesChange: Bayesian Methods for Change Points Analysis
Perform change points detection on univariate and multivariate time series according to the methods presented by Asael Fabian Martínez and Ramsés H. Mena (2014) <doi:10.1214/14-BA878> and Corradin, Danese and Ongaro (2022) <doi:10.1016/j.ijar.2021.12.019>. It also clusters different types of time dependent data with common change points, see "Model-based clustering of time-dependent observations with common structural changes" (Corradin,Danese,KhudaBukhsh and Ongaro, 2024) <doi:10.48550/arXiv.2410.09552> for details.
Version: |
2.0.0 |
Depends: |
R (≥ 3.5.0) |
Imports: |
Rcpp, salso, dplyr, tidyr, ggplot2, ggpubr |
LinkingTo: |
Rcpp, RcppArmadillo, RcppGSL |
Suggests: |
knitr, rmarkdown, testthat (≥ 3.0.0) |
Published: |
2025-03-12 |
DOI: |
10.32614/CRAN.package.BayesChange |
Author: |
Luca Danese [aut,
cre, cph],
Riccardo Corradin [aut],
Andrea Ongaro [aut] |
Maintainer: |
Luca Danese <l.danese1 at campus.unimib.it> |
BugReports: |
https://github.com/lucadanese/BayesChange/issues |
License: |
GPL (≥ 3) |
URL: |
https://github.com/lucadanese/BayesChange |
NeedsCompilation: |
yes |
Materials: |
README NEWS |
In views: |
TimeSeries |
CRAN checks: |
BayesChange results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=BayesChange
to link to this page.